Performance of LAD-LASSO and WLAD-LASSO on High Dimensional Regression in Handling Data Containing Outliers
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Ajeel, S. M., & Hashem, H. A. (2020). Comparison Some Robust Regularization Methods in Linear Regression via Simulation Study. Academic Journal of Nawroz University, 9(2), 244–252. https://doi.org/10.25007/ajnu.v9n2a818
Alaluusua, K. (2018). Outlier detection using robust PCA methods. Bachelor’s Thesis, Aalto University. https://doi.org/10.13140/RG.2.2.17736.88321
Arslan, O. (2012). Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression. Computational Statistics and Data Analysis, 56(6), 1952–1965. https://doi.org/10.1016/j.csda.2011.11.022
Bangdiwala, S. I. (2018). Regression: multiple linear. International Journal of Injury Control and Safety Promotion, 25(2), 232–236. https://doi.org/10.1080/17457300.2018.1452336
Boudt, K., Rousseeuw, P. J., Vanduffel, S., & Verdonck, T. (2019). The minimum regularized covariance determinant estimator. Statistics and Computing, 30(1), 113–128. https://doi.org/10.1007/s11222-019-09869-x
Bulut, H. (2020). Mahalanobis distance based on minimum regularized covariance determinant estimators for high dimensional data. Communications in Statistics - Theory and Methods, 49(24), 5897–5907. https://doi.org/10.1080/03610926.2020.1719420
Bulut, H., Öner, Y., & Sözen, Ç. (2016). A Proposal for Robpca Algorithm International Journal of Sciences : A Proposal for Robpca Algorithm. International Journal of Sciences: Basic and Applied Research (IJSBAR), 29(2), 119–129. https://www.gssrr.org/index.php/Journal OfBasicAndApplied/article/view/6131
Camponovo, L. (2022). Extended Oracle Properties of Adaptive Lasso Estimators. Open Journal of Statistics, 12(2), 210–215. https://doi.org/10.4236/ojs.2022.122015
Daoud, J. I. (2017). Multicollinearity and Regression Analysis. Journal of Physics: Conference Series, 949(1), 012009. https://doi.org/10.1088/1742-6596/949/1/012009
Dielman, T. E. (2005). Least absolute value regression : recent contributions. Journal of Statistical Computation and Simulation, 75(4), 263–286. https://doi.org/10.1080/0094965042000223680
Giloni, A., Simonoff, J. S., & Sengupta, B. (2006). Robust weighted LAD regression. Computational Statistics and Data Analysis, 50(11), 3124–3140. https://doi.org/10.1016/j.csda.2005.06.005
Hubert, M., Rousseeuw, P. J., & Vanden Branden, K. (2005). ROBPCA: A new approach to robust principal component analysis. Technometrics, 47(1), 64–79. https://doi.org/10.1198/004017004000000563
Hubert, M., Rousseeuw, P., & Verdonck, T. (2009). Robust PCA for skewed data and its outlier map. Computational Statistics and Data Analysis, 53(6), 2264–2274. https://doi.org/10.1016/j.csda.2008.05.027
Keith, T. Z. (2015). Multiple Regression and Beyond: An Introduction to Multiple Regression and Structural Equation Modeling 2nd Edition. New York:Taylor & Francis.
Leem, H. H., Kim, E. O., Seo, M. J., & Choi, S. W. (2011). Antioxidant and Anti-Inflammatory Activities of Eugenol and Its Derivatives from Clove (Eugenia caryophyllata Thunb.). Journal Korean Social Food Science Nutrition, 40(10), 1361–1370. https://doi.org/10.3746/jkfn.2011.40.10.1361
Lima, E., Davies, P., Kaler, J., Lovatt, F., & Green, M. (2020). Variable selection for inferential models with relatively high-dimensional data: Between method heterogeneity and covariate stability as adjuncts to robust selection. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-64829-0
Machkour, J., Muma, M., Alt, B., & Zoubir, A. M. (2020). A robust adaptive Lasso estimator for the independent contamination model. Signal Processing, 174(2), 1649–1653. https://doi.org/10.1016/j.sigpro.2020.107608
Mazimba, O. (2017). Umbelliferone: Sources, chemistry and bioactivities review. Bulletin of Faculty of Pharmacy, Cairo University, 55(2), 223–232. https://doi.org/10.1016/j.bfopcu.2017.05.001
Rahardiantoro, S., & Kurnia, A. (2015). LAD-LASSO : Simulation Study of Robust Regression in High Dimensional Data. Indonesian Journal of Statistics, 18(2), 105–107. https://journal.ipb.ac.id/index.php/statistika/article/view/16775
Sirimongkolkasem, T., & Drikvandi, R. (2019). On Regularisation Methods for Analysis of High Dimensional Data. Annals of Data Science, 6(4), 737–763. https://doi.org/10.1007/s40745-019-00209-4
Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society B, 58(1), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
Tibshirani, R. J. (2013). The lasso problem and uniqueness. Electronic Journal of Statistics, 7(1), 1456–1490. https://doi.org/10.1214/13-EJS815
Varin, S. (2021). Comparing the Predictive Performance of OLS and 7 Robust Linear Regression Estimators on a Real and Simulated Datasets. International Journal of Engineering Applied Sciences and Technology, 5(11), 9–23. https://doi.org/10.33564/ijeast.2021.v05i11.002
Wahid, A., Khan, D. M., & Hussain, I. (2017). Robust Adaptive Lasso method for parameter’s estimation and variable selection in high-dimensional sparse models. PLoS ONE, 12(8), 1–17. https://doi.org/10.1371/journal.pone.0183518
Wang, H., Li, G., & Jiang, G. (2007). Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso. Journal of Business and Economic Statistics, 25(3), 347–355. https://doi.org/10.1198/073500106000000251
Wang, L. (2013). The L1 penalized LAD estimator for high dimensional linear regression. Journal of Multivariate Analysis, 120(2013), 135–151. https://doi.org/10.1016/j.jmva.2013.04.001
Wasserman, L., & Roeder, K. (2009). High-Dimensional Variable Selection. Annals of Statistics, 37(5A), 2178–2201. https://doi.org/10.1214/08-AOS646
Yang, H., & Li, N. (2018). WLAD-LASSO method for robust estimation and variable selection in Partially Linear Models. Communications in Statistics - Theory and Methods, 47(20), 4958–4976. https://doi.org/10.1080/03610926.2017.1383427
Zhao, N., Xu, Q., Tang, M. L., Jiang, B., Chen, Z., & Wang, H. (2020). High-Dimensional Variable Screening under Multicollinearity. Stat, 9(1), 1–14. https://doi.org/10.1002/sta4.272
Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101(476), 1418–1429. https://doi.org/10.1198/016214506000000735
DOI: https://doi.org/10.31764/jtam.v6i4.8968
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Septa Dwi Cahya, Bagus Sartono, Indahwati, Evita Purnaningrum
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: