COVID-19 Predictions Using Regression Growth Model in Ireland and Israel

Wasim Raza, Dieky Adzkiya, Subchan Subchan, Saba Mehmood

Abstract


The World Health Organization (WHO) asserted the recently discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as COVID-19, a pandemic on March 11, 2020. Since the genesis and growth mechanisms of this virus are unclear and impossible to detect, there are still many uncertainties concerning it and no vaccination or effective treatment. The main goal is to halt its global spread. This paper employed a regression growth model with an extended Weibull function on the dynamics of COVID-19 to make predictions about its spread. Our findings demonstrate the viability of using this model to forecast the spread of the virus. Using a logistic growth regression model, the note tabulates the COVID-19-related final epidemic sizes for a few sites, including Ireland and Israel.

Keywords


COVID-19; Regression growth model; Weibull function; Forecasting.

Full Text:

DOWNLOAD [PDF]

References


Anastassopoulou, C., Russo, L., Tsakris, A., & Siettos, C. (2020). Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PLOS ONE, 15(3), e0230405. https://doi.org/10.1371/journal.pone.0230405

Bailey, N. T. (1975). The mathematical theory of infectious diseases and its applications.

Barbarossa, M. V., Dénes, A., Kiss, G., Nakata, Y., Röst, G., & Vizi, Z. (2015). Transmission Dynamics and Final Epidemic Size of Ebola Virus Disease Outbreaks with Varying Interventions. PLOS ONE, 10(7), e0131398. https://doi.org/10.1371/journal.pone.0131398

Batista, M. (2020). Estimation of the final size of the coronavirus epidemic by the logistic model. https://doi.org/10.1101/2020.02.16.20023606

Bohner, M., Streipert, S., & Torres, D. F. M. (2019). Exact solution to a dynamic SIR model. Nonlinear Analysis: Hybrid Systems, 32, 228–238. https://doi.org/10.1016/j.nahs.2018.12.005

Brauer, F. (2019). The Final Size of a Serious Epidemic. Bulletin of Mathematical Biology, 81(3), 869–877. https://doi.org/10.1007/s11538-018-00549-x

Coronavirus worldometer website. https://www.worldometers.info/ coronavirus/. (n.d.).

Danby, & John Michael Anthony. (1985). Computing applications to differential equations: Modelling in the physical and social sciences. Prentice Hall.

Haberman, R., & Kolkka, R. W. (1977). Mathematical Models. Journal of Dynamic Systems, Measurement, and Control, 99(3), 219–219. https://doi.org/10.1115/1.3427107

Harko, T., Lobo, F. S. N., & Mak, M. K. (2014). Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates. Applied Mathematics and Computation, 236, 184–194. https://doi.org/10.1016/j.amc.2014.03.030

Ma, J. (2020). Estimating epidemic exponential growth rate and basic reproduction number. Infectious Disease Modelling, 5, 129–141. https://doi.org/10.1016/j.idm.2019.12.009

Maliki, S. O. (2011). Analysis of Numerical and Exact solutions of certain SIR and SIS Epidemic models. Journal of Mathematical Modelling and Application, 1(4), 51–56.

Miller, J. C. (2012). A Note on the Derivation of Epidemic Final Sizes. Bulletin of Mathematical Biology, 74(9), 2125–2141. https://doi.org/10.1007/s11538-012-9749-6

Nesteruk, I. (2020). Statistics-Based Predictions of Coronavirus Epidemic Spreading in Mainland China. Innovative Biosystems and Bioengineering, 4(1), 13–18. https://doi.org/10.20535/ibb.2020.4.1.195074

Pell, B., Kuang, Y., Viboud, C., & Chowell, G. (2018a). Using phenomenological models for forecasting the 2015 Ebola challenge. Epidemics, 22, 62–70. https://doi.org/10.1016/j.epidem.2016.11.002

Pell, B., Kuang, Y., Viboud, C., & Chowell, G. (2018b). Using phenomenological models for forecasting the 2015 Ebola challenge. Epidemics, 22, 62–70. https://doi.org/10.1016/j.epidem.2016.11.002

Read, J. M., Bridgen, J. R. E., Cummings, D. A. T., Ho, A., & Jewell, C. P. (2021). Novel coronavirus 2019-nCoV (COVID-19): early estimation of epidemiological parameters and epidemic size estimates. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1829). https://doi.org/10.1098/rstb.2020.0265

Shabbir, G., Khan, H., & Sadiq, M. A. (2010). A note on Exact solution of SIR and SIS epidemic models.

Shanks, D. (1955). Non-linear Transformations of Divergent and Slowly Convergent Sequences. Journal of Mathematics and Physics, 34(1–4), 1–42. https://doi.org/10.1002/sapm19553411

Singhal, T. (2020). A Review of Coronavirus Disease-2019 (COVID-19). The Indian Journal of Pediatrics, 87(4), 281–286. https://doi.org/10.1007/s12098-020-03263-6

William Ogilvy Kermack and A. G. McKendrick. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115(772), 700–721. https://doi.org/10.1098/rspa.1927.0118

Wu, J. T., Leung, K., & Leung, G. M. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The Lancet, 395(10225), 689–697. https://doi.org/10.1016/S0140-6736(20)30260-9

Xiong, H., & Yan, H. (2020). Simulating the infected population and spread trend of 2019-nCov under different policy by EIR model. https://doi.org/10.1101/2020.02.10.20021519

Yang, J., Zheng, Y., Gou, X., Pu, K., Chen, Z., Guo, Q., Ji, R., Wang, H., Wang, Y., & Zhou, Y. (2020). Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. International Journal of Infectious Diseases, 94, 91–95. https://doi.org/10.1016/j.ijid.2020.03.017




DOI: https://doi.org/10.31764/jtam.v6i4.10944

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Wasim Raza, Dieky Adzkiya, Subchan, Saba Mehmood

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: