Implementation of Art and Technology in Batik Purwakarta
Abstract
Keywords
Full Text:
Download [PDF]References
Adnyana, I. P. W., Kesiman, M. W. A., & Wahyuni, D. S. (2013). Pengembangan Aplikasi Pembuatan Pola Motif Batik Dengan Menggunakan Pengolahan Citra Digital. Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), 1(2), 164–172.
Anonim. (2020). Waduk Jatiluhur. Retrieved from https://1.bp.blogspot.com/-ELvnszSOVa4/VuEAtFHzjgI/AAAAAAAAHNY/w2Cv7z94ZSw/s1600/waduk%2Bjatiluhur%2B1...jpg
Bilai, Ö., Konca, A. S., & Arıkan, N. (2019). Children’;s Geometric Understanding through Digital Activities: The Case of Basic Geometric Shapes. International Journal of Progressive Education, 15(3), 108–122. https://doi.org/10.29329/ijpe.2019.193.8
Dewi, R A M, D. (2016). Geometri Fraktal untuk Re-Desain Motif Batik Gajah Oling Banyuwangi. Jurnal Pendidikan Matematika, 5(2), 222–230.
Dobashi, Y., Kaji, S., & Iwasaki, K. (2019). Mathematical Insights into Advanced Computer Graphics Techniques (Vol. 32). Japan: Springer. https://doi.org/10.1007/978-981-13-2850-3
Garnadi, A. D., Guritman, S., Kusnanto, A., & Hanum, F. (2012). Survey Pola Grup Kristalogi Bidang Ragam Batik Tradisional. Journal of Mathematics and Its Applications, 11(2), 1. https://doi.org/10.29244/jmap.11.2.1-10
Gente, M., Leman, M. A., & Anindita, P. S. (2015). Uji Efek Analgesia Ekstrak Daun Kecubung (Datura metel L.) Pada Tikus Wistar (Rattus norvegicus) Jantan. Jurnal E-GIGI, 3(2). https://doi.org/10.35790/eg.3.2.2015.9838
Hariadi, Y., Lukman, M., & Destiarmand, A. H. (2013). Batik Fractal : actal : Marriage of Art and Science. ITB Journal Vis. Art & Des, 4(1), 84–93. https://doi.org/10.5614/itbj.vad.2013.4.1.9
Lindenmayer, A. (2004). The algorithmic beauty of plants. New York: Springer-Verlag.
Marom, S. (2017). Application of Fractal Concept in Material Batik Development Based on Wolframs Mathematica. ZERO: Jurnal Sains, Matematika Dan Terapan, 1(2), 49–61. https://doi.org/10.30829/zero.v1i2.1461
Novita, R., Putra, M., Rosayanti, E., & Fitriati, F. (2018). Design learning in mathematics education: Engaging early childhood students in geometrical activities to enhance geometry and spatial reasoning. Journal of Physics: Conference Series, 1088. https://doi.org/10.1088/1742-6596/1088/1/012016
Okezone. (2020). Sejarah waduk jalituhur. Retrieved from https://news.okezone.com/read/2019/10/15/525/2117030/sejarah-waduk-jatiluhur-14-desa-berkorban-untuk-tenggelam-demi-cadangan-air-jabar
Pendidikan, D. (2020). Pengertian Embun Serta Proses Terjadinya Lengkap. Retrieved from dosenpendidikan.co.id
Pixabay. (n.d.). Tetes embun. Retrieved from pixabay.com
Prasetyo, H., & Simatupang, J. W. (2019). Batik Image Retrieval Using Maximum Run Length LBP and Sine-Cosine Optimizer. ICSECC 2019 - International Conference on Sustainable Engineering and Creative Computing: New Idea, New Innovation, Proceedings, 265–269. https://doi.org/10.1109/ICSECC.2019.8907190
Prastyo, A., & Mulyana, T. M. S. (2014). Aplikasi Pola Batik Menggunakan Metode Fraktal dan Algoritma Lingkaran 8 Way Simetris. Jurnal Teknologi Informasi, 10(2), 1–9.
Purwakarta, K. (2018). Sejarah Bendungan Jatiluhur. Retrieved from purwakartakab.go.id
Qingni, Y., Jian, L., & Haisong, H. (2016). Auto-Generation Method of Butterfly Pattern of Batik Based on Fractal Geometry. International Journal of Signal Processing, Image Processing and Pattern Recognition, 9(4), 379–392.
Saefurrohman, & Ningsih, D. H. U. (2016). Desain Motif Batik Dengan Metode Fraktal Dan Algoritma L-System untuk Membangun Pustaka Batik Wali. Dinamik, 21(1), 42–51.
Setiani, E. D., & Suyoto, S. (2010). New Edge Detection Method Using Elisabeth Method: Case Study Javanese Batiks. Jurnal Buana Informatika, 1(1), 47–56. https://doi.org/10.24002/jbi.v1i1.289
Setiawan, I. (2017). Sate Maranggi: Kuliner Khas Kabupaten Purwakarta. Patanjala : Jurnal Penelitian Sejarah Dan Budaya, 9(2), 277. https://doi.org/10.30959/patanjala.v9i2.9
Shidi, T. A. P., & Suyoto. (2011). New Edge Detection Method for Indonesian Batik. Jurnal Buana Info, 2(1), 55–62.
Tian, G., Yuan, Q., Hu, T., & Shi, Y. (2019). Auto-generation system based on fractal geometry for batik pattern design. Applied Sciences (Switzerland), 9(11). https://doi.org/10.3390/app9112383
Wulandari, E. Y., Purnomo, K. D., & Kamsyakawuni, A. (2017). Pengembangan Desain Batik Labako Dengan Menggabungkan Geometri Fraktal Kurva Naga dan Corak Daun Tembakau ( Development of Labako Batik Design with Fractal Geometry Dragon Curve and Tobacco Leaf Motif Combonation ). Jurnal Ilmu Dasar, 18(2), 125–132.
DOI: https://doi.org/10.31764/jtam.v4i1.1872
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 JTAM (Jurnal Teori dan Aplikasi Matematika)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: