Implementation of Art and Technology in Batik Purwakarta

Ratnadewi Ratnadewi, Ariesa Pandanwangi, Agus Prijono

Abstract


Indonesia is dominated by cities that have a history of batik, but Purwakarta does not have a history of batik. But thanks to the persistence of policy holders, Purwakarta currently has batik obtained by elevating the local wisdom of the city of Purwakarta. After surveys and interviews, several batik motifs were designed. The batik motif shape, size and position will be studied which will formulate mathematical equations based on basic geometric shapes such as circles, arches, lines, rectangles, which are implemented into the form of computer graphics (turtles) graph and explained in the form of an algorithm (pseudocode) computer programming to make autogenerative motifs on Purwakarta batik that did not exist before. Batik design is inspired by food and tourist locations which form the basis of the formation of typical Purwakarta batik motifs. Jatiluhur Dam, Datura Metel L. Flower, Sate Maranggi, Mangosteen Fruit is a local wisdom owned by the city of Purwakarta. The results of the morning glory batik design and Jatiluhur dew through mathematical and turtle charts are then formulated so that the batik motif design can be saved by documenting the mathematical equation or the pseudocode of the batik motif. With the results of digital motifs, the process of repeating patterns, duplicating and storing data becomes easier.

Keywords


Batik Purwakarta; Graphics Turtle; Graphics Mathematic; Pseudocode.

Full Text:

Download [PDF]

References


Adnyana, I. P. W., Kesiman, M. W. A., & Wahyuni, D. S. (2013). Pengembangan Aplikasi Pembuatan Pola Motif Batik Dengan Menggunakan Pengolahan Citra Digital. Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), 1(2), 164–172.

Anonim. (2020). Waduk Jatiluhur. Retrieved from https://1.bp.blogspot.com/-ELvnszSOVa4/VuEAtFHzjgI/AAAAAAAAHNY/w2Cv7z94ZSw/s1600/waduk%2Bjatiluhur%2B1...jpg

Bilai, Ö., Konca, A. S., & Arıkan, N. (2019). Children’;s Geometric Understanding through Digital Activities: The Case of Basic Geometric Shapes. International Journal of Progressive Education, 15(3), 108–122. https://doi.org/10.29329/ijpe.2019.193.8

Dewi, R A M, D. (2016). Geometri Fraktal untuk Re-Desain Motif Batik Gajah Oling Banyuwangi. Jurnal Pendidikan Matematika, 5(2), 222–230.

Dobashi, Y., Kaji, S., & Iwasaki, K. (2019). Mathematical Insights into Advanced Computer Graphics Techniques (Vol. 32). Japan: Springer. https://doi.org/10.1007/978-981-13-2850-3

Garnadi, A. D., Guritman, S., Kusnanto, A., & Hanum, F. (2012). Survey Pola Grup Kristalogi Bidang Ragam Batik Tradisional. Journal of Mathematics and Its Applications, 11(2), 1. https://doi.org/10.29244/jmap.11.2.1-10

Gente, M., Leman, M. A., & Anindita, P. S. (2015). Uji Efek Analgesia Ekstrak Daun Kecubung (Datura metel L.) Pada Tikus Wistar (Rattus norvegicus) Jantan. Jurnal E-GIGI, 3(2). https://doi.org/10.35790/eg.3.2.2015.9838

Hariadi, Y., Lukman, M., & Destiarmand, A. H. (2013). Batik Fractal : actal : Marriage of Art and Science. ITB Journal Vis. Art & Des, 4(1), 84–93. https://doi.org/10.5614/itbj.vad.2013.4.1.9

Lindenmayer, A. (2004). The algorithmic beauty of plants. New York: Springer-Verlag.

Marom, S. (2017). Application of Fractal Concept in Material Batik Development Based on Wolframs Mathematica. ZERO: Jurnal Sains, Matematika Dan Terapan, 1(2), 49–61. https://doi.org/10.30829/zero.v1i2.1461

Novita, R., Putra, M., Rosayanti, E., & Fitriati, F. (2018). Design learning in mathematics education: Engaging early childhood students in geometrical activities to enhance geometry and spatial reasoning. Journal of Physics: Conference Series, 1088. https://doi.org/10.1088/1742-6596/1088/1/012016

Okezone. (2020). Sejarah waduk jalituhur. Retrieved from https://news.okezone.com/read/2019/10/15/525/2117030/sejarah-waduk-jatiluhur-14-desa-berkorban-untuk-tenggelam-demi-cadangan-air-jabar

Pendidikan, D. (2020). Pengertian Embun Serta Proses Terjadinya Lengkap. Retrieved from dosenpendidikan.co.id

Pixabay. (n.d.). Tetes embun. Retrieved from pixabay.com

Prasetyo, H., & Simatupang, J. W. (2019). Batik Image Retrieval Using Maximum Run Length LBP and Sine-Cosine Optimizer. ICSECC 2019 - International Conference on Sustainable Engineering and Creative Computing: New Idea, New Innovation, Proceedings, 265–269. https://doi.org/10.1109/ICSECC.2019.8907190

Prastyo, A., & Mulyana, T. M. S. (2014). Aplikasi Pola Batik Menggunakan Metode Fraktal dan Algoritma Lingkaran 8 Way Simetris. Jurnal Teknologi Informasi, 10(2), 1–9.

Purwakarta, K. (2018). Sejarah Bendungan Jatiluhur. Retrieved from purwakartakab.go.id

Qingni, Y., Jian, L., & Haisong, H. (2016). Auto-Generation Method of Butterfly Pattern of Batik Based on Fractal Geometry. International Journal of Signal Processing, Image Processing and Pattern Recognition, 9(4), 379–392.

Saefurrohman, & Ningsih, D. H. U. (2016). Desain Motif Batik Dengan Metode Fraktal Dan Algoritma L-System untuk Membangun Pustaka Batik Wali. Dinamik, 21(1), 42–51.

Setiani, E. D., & Suyoto, S. (2010). New Edge Detection Method Using Elisabeth Method: Case Study Javanese Batiks. Jurnal Buana Informatika, 1(1), 47–56. https://doi.org/10.24002/jbi.v1i1.289

Setiawan, I. (2017). Sate Maranggi: Kuliner Khas Kabupaten Purwakarta. Patanjala : Jurnal Penelitian Sejarah Dan Budaya, 9(2), 277. https://doi.org/10.30959/patanjala.v9i2.9

Shidi, T. A. P., & Suyoto. (2011). New Edge Detection Method for Indonesian Batik. Jurnal Buana Info, 2(1), 55–62.

Tian, G., Yuan, Q., Hu, T., & Shi, Y. (2019). Auto-generation system based on fractal geometry for batik pattern design. Applied Sciences (Switzerland), 9(11). https://doi.org/10.3390/app9112383

Wulandari, E. Y., Purnomo, K. D., & Kamsyakawuni, A. (2017). Pengembangan Desain Batik Labako Dengan Menggabungkan Geometri Fraktal Kurva Naga dan Corak Daun Tembakau ( Development of Labako Batik Design with Fractal Geometry Dragon Curve and Tobacco Leaf Motif Combonation ). Jurnal Ilmu Dasar, 18(2), 125–132.




DOI: https://doi.org/10.31764/jtam.v4i1.1872

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 JTAM (Jurnal Teori dan Aplikasi Matematika)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: