Metric Coloring of Pencil Graphs

Robiatul Adawiyah, Arif Pujiyanto, Arika Indah Kristiana, Dafik Dafik, Rafiantika Megahniah Prihandini, Susanto Susanto

Abstract


A graph is defined as an ordered pair (V,E), where V is a non-empty set of elements called vertices, and E is a set of edges that are finite and may be empty. Each edge connects two distinct vertices from V(G). Let f:V(G)→{1,2,3,…,k} be a coloring of the vertices of graph G, where two adjacent vertices can be colored with the same color. Considering the set of color classes Π={C_1,C_2,…,C_k}, for a vertex v in G, the color representation of v is a k-vector r(Π)=(d(v,C_1 ),d(v,C_2 ),…,d(v,C_k )),, where d(v,C_1 )=min⁡{d(v,c)∶c∈C_1}. If r(u | Π )≠r(v | Π ) for every two adjacent vertices u and v in G, the coloring is called a metric coloring of G. Thus, it can be concluded that two adjacent vertices u and v can be colored with the same color if their metric code conditions are different. The minimum number of the metric coloring is called as metric chromatic number. The goal of this research is analizing the metric chromatic number of the pencil graph. This graph was chosen because no previous research had been carried out on this graph. The proof begins by determining the lower bound, then determining the upper bound by checking coloring function and checking the metric coloring function and the metric code function of each vertex. In this research, we got the exact value of metric chromatic number of several type of pencil graph.


Keywords


Metric Dimension; Resolving Set; Metric Coloring; Pencil Graph.

Full Text:

DOWNLOAD [PDF]

References


Adawiyah, R., Aima, M., & Kristiana, A. I. (2023). an Inclusive Local Irregularity Vertex Coloring of Book Graph Family. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(2), 0601–0608. https://doi.org/10.30598/barekengvol17iss2pp0601-0608

Adawiyah, R., Dafik, Agustin, I. H., Prihandini, R. M., Alfarisi, R., & Albirri, E. R. (2020). On the local multiset dimension of graph with homogenous pendant edges. Journal of Physics: Conference Series, 1538(1). https://doi.org/10.1088/1742-6596/1538/1/012023

Adawiyah, R., Dafik, Prihandini, R. M., Albirri, E. R., Agustin, I. H., & Alfarisi, R. (2019). The local multiset dimension of unicyclic graph. IOP Conference Series: Earth and Environmental Science, 243(1). https://doi.org/10.1088/1755-1315/243/1/012075

Adawiyah, R., Makhfudloh, I. I., & Prihandini, R. M. (2023). Local edge (a, d) –antimagic coloring on sunflower, umbrella graph and its application. Alifmatika: Jurnal Pendidikan Dan Pembelajaran Matematika, 5(1), 70–81. https://doi.org/10.35316/alifmatika.2023.v5i1.70-81

Admadja, K. (2020). Pelabelan Harmonis Pada Graf Tangga Segi Empat Variasi. In Prosiding Seminar Nasional Matematika Dan Pembelajarannya. http://repository.istn.ac.id/id/eprint/6541

Afriantini, A., Helmi, H., & Fransiskus, F. (2019). Pewarnaan Simpul, Sisi, Wilayah Pada Graf Dan Penerapannya. Bimaster : Buletin Ilmiah Matematika, Statistika Dan Terapannya, 8(4), 773–782. https://doi.org/10.26418/bbimst.v8i4.36037

Alfarisi, R., Kristiana, A. I., Albirri, E. R., Adawiyah, R., & Dafik. (2019). Metric chromatic number of unicyclic graphs. International Journal of Scientific and Technology Research, 8(6), 127–130. https://www.ijstr.org/final-print/june2019/Metric-Chromatic-Number-Of-Unicyclic-Graphs.pdf

Daswa, D., & Riyadi, M. (2017). Aplikasi Pewarnaan Graf Pada Masalah Penyusunan Jadwal Perkuliahan Di Universitas Kuningan. JES-MAT (Jurnal Edukasi Dan Sains Matematika), 3(2), 217. https://doi.org/10.25134/jes-mat.v3i2.695

Epstein, L., Levin, A., & Woeginger, G. J. (2015). The (weighted) metric dimension of graphs: hard and easy cases. Algorithmica, 72(4), 1130–1171. https://pure.tue.nl/ws/files/3891635/43179071317553.pdf

Estrada-Moreno, A., Rodríguez-Velázquez, J. A., & Yero, I. G. (2013). The k-metric dimension of a graph. ArXiv Preprint ArXiv:1312.6840. https://doi.org/10.12785/amis/090609

Evalia, F., Yundari, & Fran, F. (2019). Bilangan Kromatik Bintang Pada Graf Yang Memuat Bintang Dan Cycle. Bimaster : Buletin Ilmiah Matematika, Statistika Dan Terapannya, 8(2), 307–316. https://doi.org/10.26418/bbimst.v8i2.32462

Febrianti, F., Yulianti, L., & Narwen, N. (2019). Dimensi Metrik Pada Graf Amalgamasi Tangga Segitiga Diperumum Homogen. Jurnal Matematika UNAND, 8(1), 84. https://doi.org/10.25077/jmu.8.1.84-90.2019

Firman, F., Dafik, D., & Albirri, E. R. (2022). Rainbow Vertex Connection Number pada Keluarga Graf Roda. Cgant Journal of Mathematics and Applications, 3(1), 1–10. https://doi.org/10.25037/cgantjma.v3i1.71

Kelenc, A., Tratnik, N., & Yero, I. G. (2018). Uniquely identifying the edges of a graph: the edge metric dimension. Discrete Applied Mathematics, 251, 204–220. https://doi.org/10.1016/j.dam.2018.05.052

Knor, M., Majstorović, S., Toshi, A. T. M., Škrekovski, R., & Yero, I. G. (2021). Graphs with the edge metric dimension smaller than the metric dimension. Applied Mathematics and Computation, 401, 126076. https://doi.org/10.1016/j.amc.2021.126076

Kristiana, A. I., Alfarisi, R., A’yun, Q., & Saputra, G. (2023). Pelabelan dan Pewarnaan Graf (1st ed). Universitas Jember.

Ma’arif, A., Halim, M. G., Indriani, S., Kristiana, A. I., & Alfarisi, R. (2021). Pewarnaan Titik Ketakteraturan Lokal Inklusif Pada Graf Kipas, Graf Petasan, Dan Graf Matahari. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 15(4), 727–734. https://doi.org/10.30598/barekengvol15iss4pp727-734

Makalew, R. A. M., Montolalu, C. E. J. C., & Mananohas, M. L. (2020). d ’ CartesiaN Lintasan Hamiltonian pada Graf 4-Connected. D’Cartesian.

Putri, D. F., Dafik, D., & Kusbudiono, K. (2021). Analisa Pewarnaan Total r-Dinamis pada Graf Lintasan dan Graf Hasil Operasi. Cgant Journal of Mathematics and Applications, 2(1), 45–61. https://doi.org/10.25037/cgantjma.v2i1.51

Raj, F. S., & George, A. (2017). On the metric dimension of HDN 3 and PHDN 3. 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), 1333–1336. https://doi.org/10.1109/ICPCSI.2017.8391927

Rohmatulloh, M. Y., Slamin, Kristiana, A. I., Dafik, & Alfarisi, R. (2021). On metric chromatic number of comb product of ladder graph. Journal of Physics: Conference Series, 1836(1). https://doi.org/10.1088/1742-6596/1836/1/012026

Saputra, G., Kristiana, A. I., Adawiyah, R., Pujiyanto, A., Nur ’aini, L., Laila, I., & Dila, R. (2024). On the Local Irregularity Vertex Coloring of Pencil Graphs. Jurnal Axioma : Jurnal Matematika Dan Pembelajaran, 9 (1)(1), 97–105.

Simamora, D. N. S., & Salman, A. N. M. (2015). The Rainbow (Vertex) Connection Number of Pencil Graphs. Procedia Computer Science, 74(December 2015), 138–142. https://doi.org/10.1016/j.procs.2015.12.089

Slamin. (2023). Teori Graf dan Aplikasinya (2nd ed). Rumpun Dua Belas.

Tillquist, R. C., Frongillo, R. M., & Lladser, M. E. (2023). Getting the lay of the land in discrete space: A survey of metric dimension and its applications. SIAM Review, 65(4), 919–962. https://doi.org/10.1137/21M1409512

Zhang, P. (2016). A kaleidoscopic view of graph colorings. SpringerBriefs in Mathematics. https://link.springer.com/book/10.1007/978-3-319-30518-9




DOI: https://doi.org/10.31764/jtam.v9i1.27242

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Robiatul Adawiyah, Arif Pujiyanto, Arika Indah Kristiana, Dafik, Rafiantika Megahniah Prihandini, Susanto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: