Multigroup Analysis on Partial Least Square-Structural Equation Modeling in Modeling College Students' Saving Behavior

Lisa Asaliontin, Eni Sumarminingsih, Solimun Solimun, Hanifa Sepriadi, Atiek Iriany, Rosita Hamdan

Abstract


This study aims to determine the factors that influence college students' saving behavior, with gender as a moderating variable. The analysis used is Partial Least Square-Structural Equation Modeling (PLS-SEM) with Multigroup Analysis. This study was conducted on 200 college students in City X who were selected by purposive sampling. Data collection was carried out using a structured questionnaire that measures Perceived Benefits, Perceived Ease of Use, Saving Intentions, and Saving Behavior. Confirmatory Factor Analysis (CFA) and Bootstrapping were used to validate the measurement model and structural relationships. The results showed that Perceived Benefits and Perceived Ease had a significant effect on Saving Intentions and Saving Behavior. In addition, Saving Intentions had a significant effect on Saving Behavior. This relationship applies to both male and female groups, with a determination coefficient of 86.2% for males and 86.7% for females. Moderation analysis shows that gender moderates the relationship between Perceived Benefits and Saving Behavior, as well as between Perceived Ease and Saving Behavior. These findings highlight the importance of considering gender differences in efforts to improve students' savings behavior.

 


Keywords


Moderation; Multigroup Analysis; PLS-SEM; College Students’ Saving Behavior.

Full Text:

DOWNLOAD [PDF]

References


Aguinis, H., Edwards, J. R., & Bradley, K. J. (2017). Improving Our Understanding of Moderation and Mediation in Strategic Management Research. Organizational Research Methods, 20(4), 665–685. https://doi.org/10.1177/1094428115627498

Akben-Selcuk, E. (2015). Factors Influencing College Students’ Financial Behaviors in Turkey: Evidence from a National Survey. International Journal of Economics and Finance, 7(87–94), 1–23. http://dx.doi.org/10.5539/ijef.v7n6p87

Albahri, A. S., Alnoor, A., Zaidan, A. A., Albahri, O. S., Hameed, H., Zaidan, B. B., Peh, S. S., Zain, A. B., Siraj, S. B., Alamoodi, A. H., & Yass, A. A. (2021). Based on the multi-assessment model: Towards a new context of combining the artificial neural network and structural equation modelling: A review. Chaos, Solitons and Fractals, 153(1), 111445. https://doi.org/10.1016/j.chaos.2021.111445

Dawson, J. F. (2014). Moderation in Management Research: What, Why, When, and How. Production, 19(1), 1–19. https://doi.org/10.1007/s

Efron, B., & Tibshirani, R. J. (1994). An Introduction to the Bootstrap (pp. 68–74). https://books.google.co.id/books/about/An_Introduction_to_the_Bootstrap.html?id=gLlpIUxRntoC&redir_esc=y

Fan, Y., Chen, J., Shirkey, G., John, R., Wu, S. R., Park, H., & Shao, C. (2016). Applications of structural equation modeling (SEM) in ecological studies: an updated review. Ecological Processes, 5(1). https://doi.org/10.1186/s13717-016-0063-3

Fernandes, A. A. R., Solimun, Nurjannah, & Amaliana, L. (2021). ANALISIS REGRESI DALAM PENDEKATAN FLEKSIBEL (Ilustrasi dengan Paket Program R). UB Press. https://books.google.co.id/books/about/Analisis_Regresi_dalam_Pendekatan_Fleksi.html?id=SKFgEAAAQBAJ&redir_esc=y

Goretzko, D., Siemund, K., & Sterner, P. (2024). Evaluating Model Fit of Measurement Models in Confirmatory Factor Analysis. Educational and Psychological Measurement, 84(1), 123–144. https://doi.org/10.1177/00131644231163813

Hair, J. F., Hult, G. T., Ringle, C., & Sarstedt, M. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Sage Publication. https://uk.sagepub.com/en-gb/eur/a-primer-on-partial-least-squares-structural-equation-modeling-pls-sem/book270548

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate Data Analysis (Eighth Edition). In Gedrag & Organisatie (Vol. 19, Issue 3). https://doi.org/10.5117/2006.019.003.007

Hanafiah, M. H. (2020). Formative Vs. Reflective Measurement Model: Guidelines for Structural Equation Modeling Research. International Journal of Analysis and Applications, 18(5), 876–889. https://doi.org/10.28924/2291-8639-18-2020-876

Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management and Data Systems, 116(1), 2–20. https://doi.org/10.1108/IMDS-09-2015-0382

Horowitz, J. L. (2019). Bootstrap Methods in Econometrics. In Annual Review of Economics (Vol. 11), 193-224. https://doi.org/10.1146/annurev-economics-080218-025651

Kashif, M., Zarkada, A., & Ramayah, T. (2018). The impact of attitude, subjective norms, and perceived behavioural control on managers’ intentions to behave ethically. Total Quality Management and Business Excellence, 29(5–6), 481–501. https://doi.org/10.1080/14783363.2016.1209970

Pandis, N. (2016). Linear regression. American Journal of Orthodontics and Dentofacial Orthopedics, 149(3), 431–434. https://doi.org/10.1016/j.ajodo.2015.11.019

Rigdon, E. E., Sarstedt, M., & Ringle, C. M. (2017). On Comparing Results from CB-SEM and PLS-SEM: Five Perspectives and Five Recommendations. Marketing ZFP, 39(3), 4–16. https://doi.org/10.15358/0344-1369-2017-3-4

Roos, J. M., & Bauldry, S. (2022). Confirmatory Factor Analysis. United States of America: SAGE Publications. https://doi.org/10.4135/9781071938959

Ryu, E. (2014). Model fit evaluation in multilevel structural equation models. Frontiers in Psychology, 5(FEB), 1–9. https://doi.org/10.3389/fpsyg.2014.00081

Solimun, Fernandes, Nurjannah, A. A. R. (2017). Metode Statistika Multivariat Pemodelan Persamaan Struktural (SEM). UB Press. https://opac.perpusnas.go.id/DetailOpac.aspx?id=1141341

Theodorsson, E. (2015). Resampling methods in Microsoft Excel® for estimating reference intervals. Past, Present, and Future of Statistical Science, 25(3), 335–347. https://doi.org/10.1201/b16720-37

Wicaksono, A., & Maharani, A. (2020). The Effect of Perceived Usefulness and Perceived Ease of Use on the Technology Acceptance Model to Use Online Travel Agency. Journal of Business Management Review, 1(5), 313–328. https://doi.org/10.47153/jbmr15.502020




DOI: https://doi.org/10.31764/jtam.v9i1.27692

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Lisa Asaliontin, Eni Sumarminingsih, Solimun, Hanifa Sepriadi, Atiek Iriany, Rosita Hamdan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: