Optimizing Long-Term Meteorological Data Completeness in North Aceh, Indonesia: A Comparative Analysis of Interpolation Methods
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Arjasakusuma, S., Pratama, A. P., & Lestari, I. (2020). Assessment of Gap-Filling Interpolation Methods for Identifying Mangrove Trends at Segara Anakan in 2015 by using Landsat 8 OLI and Proba-V. Indonesian Journal of Geography, 52(3), 1–9. https://doi.org/10.22146/ijg.50556
Azharuddin, Sasmita, N. R., Idroes, G. M., Andid, R., Raihan, Fadlilah, T., Earlia, N., Ridwan, T., Maya, I., Farnida, & Idroes, R. (2023). Patient Satisfaction And Its Socio-Demographic Correlates In Zainoel Abidin Hospital, Indonesia: A Cross-Sectional Study. Unnes Journal of Public Health, 12(2), 57–67. https://doi.org/10.15294/ujph.v12i2.69233
Azizan, I., Karim, S. A. B. A., & Suresh Kumar Raju, S. (2018). Fitting Rainfall Data by Using Cubic Spline Interpolation. MATEC Web of Conferences, 225(1), 1–9. https://doi.org/10.1051/matecconf/201822505001
Bleidorn, M. T., Pinto, W. de P., Schmidt, I. M., Mendonça, A. S. F., & Reis, J. A. T. dos. (2022). Methodological approaches for imputing missing data into monthly flows series. Revista Ambiente and Agua, 17(2), 1–27. https://doi.org/10.4136/ambi-agua.2795
BPS-Statistics Indonesia. (2023). Aceh Province Gross Regional Domestic Product by Business Field Quarter 3 in 2023.
Bruce, P., Bruce, A., & Gedeck, P. (2020). Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python (2nd ed.). O’Reilly Media, Sevastopol.
Drozd, I. D., Gavrikov, A. V, & Stepanenko, V. M. (2022). Comparative characteristics of gap filling methods in high-frequency data of micrometeorological measurements. IOP Conference Series: Earth and Environmental Science, 1023(1), 1–8. https://doi.org/10.1088/1755-1315/1023/1/012009
Haldar, S., Choudhury, M., Choudhury, S., & Samanta, P. (2023). Trend analysis of long-term meteorological data of a growing metropolitan city in the era of global climate change. Total Environment Research Themes, 7(1), 1–12. https://doi.org/10.1016/j.totert.2023.100056
Heymans, M. W., & Twisk, J. W. R. (2022). Handling missing data in clinical research. Journal of Clinical Epidemiology, 151(1), 185–188. https://doi.org/10.1016/j.jclinepi.2022.08.016
Horváth, S., Lukács, D., Farsang, E., & Horváth, K. (2023). Unbiased Determination of Adsorption Isotherms by Inverse Method in Liquid Chromatography. Molecules, 28(3), 1–10. https://doi.org/10.3390/molecules28031031
Jierula, A., Wang, S., OH, T.-M., & Wang, P. (2021). Study on Accuracy Metrics for Evaluating the Predictions of Damage Locations in Deep Piles Using Artificial Neural Networks with Acoustic Emission Data. Applied Sciences, 11(5), 1–20. https://doi.org/10.3390/app11052314
Jones, R. L., Kharb, A., & Tubeuf, S. (2023). The untold story of missing data in disaster research: a systematic review of the empirical literature utilising the Emergency Events Database (EM-DAT). Environmental Research Letters, 18(10), 1–10. https://doi.org/10.1088/1748-9326/acfd42
Kim, T., Ko, W., & Kim, J. (2019). Analysis and Impact Evaluation of Missing Data Imputation in Day-ahead PV Generation Forecasting. Applied Sciences, 9(204), 1–19. https://doi.org/10.3390/app9010204
Kruba, R., Mardalena, S., Rahayu, L., Mahdi, S., Sasmita, N. R., Kesuma, Z. M., Afidh, R. P. F., Misbullah, A., & Ilhamudin, T. (2024). Quantile Regression Neural Network (QRNN) and Hybrid NN – QRNN Model for Forecasting Rice Productivity in Indonesia. In The 18th IMT-GT International Conference on Mathematics, Statistics and their Applications (pp. 100–105). Sciendo. https://doi.org/10.2478/9788367405713-018
Leirvik, T., & Yuan, M. (2021). A Machine Learning Technique for Spatial Interpolation of Solar Radiation Observations. Earth and Space Science, 8(4), 1–22. https://doi.org/10.1029/2020EA001527
Mahmoud, A., Yuan, X., Kheimi, M., & Yuan, Y. (2021). Interpolation Accuracy of Hybrid Soft Computing Techniques in Estimating Discharge Capacity of Triangular Labyrinth Weir. IEEE Access, 9(1), 6769–6785. https://doi.org/10.1109/ACCESS.2021.3049223
Marchi, M., Castellanos-Acuña, D., Hamann, A., Wang, T., Ray, D., & Menzel, A. (2020). ClimateEU, scale-free climate normals, historical time series, and future projections for Europe. Scientific Data, 7(428), 1–9. https://doi.org/10.1038/s41597-020-00763-0
Mohamad, N. B., Lai, A. C., & Lim, B. H. (2022). A case study in the tropical region to evaluate univariate imputation methods for solar irradiance data with different weather types. Sustainable Energy Technologies and Assessments, 2(50), 101764. https://doi.org/10.1016/j.seta.2021.101764
More, K. S., & Wolkersdorfer, C. (2024). Exploring Advanced Statistical Data Analysis Techniques for Interpolating Missing Observations and Detecting Anomalies in Mining Influenced Water Data. ACS ES&T Water, 4(3), 1036–1045. https://doi.org/10.1021/acsestwater.3c00163
Portela, M. M., Espinosa, L. A., & Zelenakova, M. (2020). Long-Term Rainfall Trends and Their Variability in Mainland Portugal in the Last 106 Years. Climate, 8(12), 1–18. https://doi.org/10.3390/cli8120146
Pratama, H. A., & Sam’an, M. (2023). Implementasi metode interpolasi bilinear untuk perbesaran skala citra. Jurnal Komputer Dan Teknologi Informasi, 1(1), 21–25. https://doi.org/10.26714/.v1i1.11803
Putri, A. L. R., Surarso, B., & SRRM, T. U. (2023). MICE Implementation to Handle Missing Values in Rain Potential Prediction Using Support Vector Machine Algorithm. JTAM (Jurnal Teori Dan Aplikasi Matematika), 7(4), 1167–1117. https://doi.org/10.31764/jtam.v7i4.16699
Qiu, H., Chen, H., Xu, B., Liu, G., Huang, S., Nie, H., & Xie, H. (2024). Multiple Types of Missing Precipitation Data Filling Based on Ensemble Artificial Intelligence Models. Water, 16(22), 1–21. https://doi.org/10.3390/w16223192
Rahayu, L., Ulfa, E. M., Sasmita, N. R., Sofyan, H., Kruba, R., Mardalena, S., & Saputra, A. (2023). Unraveling Geospatial Determinants : Robust Geographically Weighted Regression Analysis of Maternal Mortality in Indonesia. Infolitika Journal of Data Science, 1(2), 73–81. https://doi.org/10.60084/ijds.v1i2.133
Saputra, A., Sofyan, H., Kesuma, Z. M., Sasmita, N. R., Wichaidit, W., & Chongsuvivatwong, V. (2024). Spatial patterns of tuberculosis in Aceh Province during the COVID-19 pandemic: a geospatial autocorrelation assessment. IOP Conference Series: Earth and Environmental Science, 1356(1), 1–9. https://doi.org/10.1088/1755-1315/1356/1/012099
Sasmita, N. R., Khairul, M., Sofyan, H., Kruba, R., Mardalena, S., Dahlawy, A., Apriliansyah, F., Muliadi, M., Saputra, D. C. E., Noviandy, T. R., & Maula, A. W. (2023). A Statistical Clustering Approach: Mapping Population Indicators Through Probabilistic Analysis in Aceh Province, Indonesia. Infolitika Journal of Data Science, 1(2), 1–9. https://doi.org/https://doi.org/10.60084/ijds.v1i2.130
Segeth, K. (2018). Some splines produced by smooth interpolation. Applied Mathematics and Computation, 319(1), 387–394. https://doi.org/10.1016/j.amc.2017.04.022
Tierney, N., & Cook, D. (2023). Expanding Tidy Data Principles to Facilitate Missing Data Exploration, Visualization and Assessment of Imputations. Journal of Statistical Software, 105(7), 1–31. https://doi.org/10.18637/jss.v105.i07
Ulhaq, M. Z., Farid, M., Aziza, Z. I., Nuzullah, T. M. F., Syakir, F., & Sasmita, N. R. (2024). Forecasting Upwelling Phenomena in Lake Laut Tawar: A Semi-Supervised Learning Approach. Infolitika Journal of Data Science, 2(2), 53–61. https://doi.org/10.60084/ijds.v2i2.211
Wicher-Dysarz, J., Dysarz, T., & Jaskuła, J. (2022). Uncertainty in Determination of Meteorological Drought Zones Based on Standardized Precipitation Index in the Territory of Poland. International Journal of Environmental Research and Public Health, 19(23), 15797. https://doi.org/10.3390/ijerph192315797
Wu, L., Liu, X., & Ma, X. (2018). Spatio‐temporal temperature variations in the Chinese Yellow River basin from 1981 to 2013. Weather, 73(1), 27–33. https://doi.org/10.1002/wea.2956
Yasmin, A. A., Azahra, A. S., & Purwani, S. (2024). The application of cubic spline in rainfall modelling in Bogor and its impact on paddy production. Communications in Mathematical Biology and Neuroscience, 2024(1), 1–13. https://doi.org/10.28919/cmbn/8430
Zhou, H., Ren, H., Royer, P., Hou, H., & Yu, X.-Y. (2022). Big Data Analytics for Long-Term Meteorological Observations at Hanford Site. Atmosphere, 13(1), 1–17. https://doi.org/10.3390/atmos13010136
DOI: https://doi.org/10.31764/jtam.v9i1.27929
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Novi Reandy Sasmita, Novita Sari Saragih, Latifah Rahayu, Malfirah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: