Optimizing Long-Term Meteorological Data Completeness in North Aceh, Indonesia: A Comparative Analysis of Interpolation Methods

Novi Reandy Sasmita, Novita Sari Saragih, Latifah Rahayu, Malfirah Malfirah

Abstract


More data in meteorological records is needed to ensure the accuracy of meteorological modeling, particularly in long-term datasets. This study aims to identify the most effective interpolation method for addressing missing data in North Aceh's meteorological dataset from 2010 to 2023, with a focus on the accuracy of methods applied across various meteorological variables. The study analyzed data from North Aceh Regency, Indonesia, comprising 25,565 daily observations of temperature, humidity, rainfall, sunshine duration, and wind speed. Missing values were interpolated using three methods: spline, stineman, and moving average interpolation. Performance was evaluated using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Squared Logarithmic Error (MSLE) across 10%, 20%, and 30% levels of simulated missing data. All analysis in this study were carried out using R-4.4.2 software. While spline interpolation performed reasonably well, it showed increased variability, especially for high-variance variables like rainfall. Moving average interpolation was less reliable, with error rates increasing alongside higher levels of missing data. In contrast, stineman interpolation consistently achieved the lowest error metrics across all levels of missing data, with MAE ranging from 0.219 to 0.6691, MSLE from 0.035 to 0.109, and RMSE from 1.247 to 2.245, demonstrating superior robustness. Stineman interpolation offers a highly effective approach for managing missing meteorological data in North Aceh’s long-term dataset, enhancing data reliability for meteorological modeling and decision-making in meteorological-sensitive sectors. This study provides practical recommendations for selecting optimal interpolation techniques, especially in regions with variable meteorological data quality.

Keywords


Interpolation; Meteorology Data; Missing Data; North Aceh Regency; Long-term Data.

Full Text:

DOWNLOAD [PDF]

References


Arjasakusuma, S., Pratama, A. P., & Lestari, I. (2020). Assessment of Gap-Filling Interpolation Methods for Identifying Mangrove Trends at Segara Anakan in 2015 by using Landsat 8 OLI and Proba-V. Indonesian Journal of Geography, 52(3), 1–9. https://doi.org/10.22146/ijg.50556

Azharuddin, Sasmita, N. R., Idroes, G. M., Andid, R., Raihan, Fadlilah, T., Earlia, N., Ridwan, T., Maya, I., Farnida, & Idroes, R. (2023). Patient Satisfaction And Its Socio-Demographic Correlates In Zainoel Abidin Hospital, Indonesia: A Cross-Sectional Study. Unnes Journal of Public Health, 12(2), 57–67. https://doi.org/10.15294/ujph.v12i2.69233

Azizan, I., Karim, S. A. B. A., & Suresh Kumar Raju, S. (2018). Fitting Rainfall Data by Using Cubic Spline Interpolation. MATEC Web of Conferences, 225(1), 1–9. https://doi.org/10.1051/matecconf/201822505001

Bleidorn, M. T., Pinto, W. de P., Schmidt, I. M., Mendonça, A. S. F., & Reis, J. A. T. dos. (2022). Methodological approaches for imputing missing data into monthly flows series. Revista Ambiente and Agua, 17(2), 1–27. https://doi.org/10.4136/ambi-agua.2795

BPS-Statistics Indonesia. (2023). Aceh Province Gross Regional Domestic Product by Business Field Quarter 3 in 2023.

Bruce, P., Bruce, A., & Gedeck, P. (2020). Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python (2nd ed.). O’Reilly Media, Sevastopol.

Drozd, I. D., Gavrikov, A. V, & Stepanenko, V. M. (2022). Comparative characteristics of gap filling methods in high-frequency data of micrometeorological measurements. IOP Conference Series: Earth and Environmental Science, 1023(1), 1–8. https://doi.org/10.1088/1755-1315/1023/1/012009

Haldar, S., Choudhury, M., Choudhury, S., & Samanta, P. (2023). Trend analysis of long-term meteorological data of a growing metropolitan city in the era of global climate change. Total Environment Research Themes, 7(1), 1–12. https://doi.org/10.1016/j.totert.2023.100056

Heymans, M. W., & Twisk, J. W. R. (2022). Handling missing data in clinical research. Journal of Clinical Epidemiology, 151(1), 185–188. https://doi.org/10.1016/j.jclinepi.2022.08.016

Horváth, S., Lukács, D., Farsang, E., & Horváth, K. (2023). Unbiased Determination of Adsorption Isotherms by Inverse Method in Liquid Chromatography. Molecules, 28(3), 1–10. https://doi.org/10.3390/molecules28031031

Jierula, A., Wang, S., OH, T.-M., & Wang, P. (2021). Study on Accuracy Metrics for Evaluating the Predictions of Damage Locations in Deep Piles Using Artificial Neural Networks with Acoustic Emission Data. Applied Sciences, 11(5), 1–20. https://doi.org/10.3390/app11052314

Jones, R. L., Kharb, A., & Tubeuf, S. (2023). The untold story of missing data in disaster research: a systematic review of the empirical literature utilising the Emergency Events Database (EM-DAT). Environmental Research Letters, 18(10), 1–10. https://doi.org/10.1088/1748-9326/acfd42

Kim, T., Ko, W., & Kim, J. (2019). Analysis and Impact Evaluation of Missing Data Imputation in Day-ahead PV Generation Forecasting. Applied Sciences, 9(204), 1–19. https://doi.org/10.3390/app9010204

Kruba, R., Mardalena, S., Rahayu, L., Mahdi, S., Sasmita, N. R., Kesuma, Z. M., Afidh, R. P. F., Misbullah, A., & Ilhamudin, T. (2024). Quantile Regression Neural Network (QRNN) and Hybrid NN – QRNN Model for Forecasting Rice Productivity in Indonesia. In The 18th IMT-GT International Conference on Mathematics, Statistics and their Applications (pp. 100–105). Sciendo. https://doi.org/10.2478/9788367405713-018

Leirvik, T., & Yuan, M. (2021). A Machine Learning Technique for Spatial Interpolation of Solar Radiation Observations. Earth and Space Science, 8(4), 1–22. https://doi.org/10.1029/2020EA001527

Mahmoud, A., Yuan, X., Kheimi, M., & Yuan, Y. (2021). Interpolation Accuracy of Hybrid Soft Computing Techniques in Estimating Discharge Capacity of Triangular Labyrinth Weir. IEEE Access, 9(1), 6769–6785. https://doi.org/10.1109/ACCESS.2021.3049223

Marchi, M., Castellanos-Acuña, D., Hamann, A., Wang, T., Ray, D., & Menzel, A. (2020). ClimateEU, scale-free climate normals, historical time series, and future projections for Europe. Scientific Data, 7(428), 1–9. https://doi.org/10.1038/s41597-020-00763-0

Mohamad, N. B., Lai, A. C., & Lim, B. H. (2022). A case study in the tropical region to evaluate univariate imputation methods for solar irradiance data with different weather types. Sustainable Energy Technologies and Assessments, 2(50), 101764. https://doi.org/10.1016/j.seta.2021.101764

More, K. S., & Wolkersdorfer, C. (2024). Exploring Advanced Statistical Data Analysis Techniques for Interpolating Missing Observations and Detecting Anomalies in Mining Influenced Water Data. ACS ES&T Water, 4(3), 1036–1045. https://doi.org/10.1021/acsestwater.3c00163

Portela, M. M., Espinosa, L. A., & Zelenakova, M. (2020). Long-Term Rainfall Trends and Their Variability in Mainland Portugal in the Last 106 Years. Climate, 8(12), 1–18. https://doi.org/10.3390/cli8120146

Pratama, H. A., & Sam’an, M. (2023). Implementasi metode interpolasi bilinear untuk perbesaran skala citra. Jurnal Komputer Dan Teknologi Informasi, 1(1), 21–25. https://doi.org/10.26714/.v1i1.11803

Putri, A. L. R., Surarso, B., & SRRM, T. U. (2023). MICE Implementation to Handle Missing Values in Rain Potential Prediction Using Support Vector Machine Algorithm. JTAM (Jurnal Teori Dan Aplikasi Matematika), 7(4), 1167–1117. https://doi.org/10.31764/jtam.v7i4.16699

Qiu, H., Chen, H., Xu, B., Liu, G., Huang, S., Nie, H., & Xie, H. (2024). Multiple Types of Missing Precipitation Data Filling Based on Ensemble Artificial Intelligence Models. Water, 16(22), 1–21. https://doi.org/10.3390/w16223192

Rahayu, L., Ulfa, E. M., Sasmita, N. R., Sofyan, H., Kruba, R., Mardalena, S., & Saputra, A. (2023). Unraveling Geospatial Determinants : Robust Geographically Weighted Regression Analysis of Maternal Mortality in Indonesia. Infolitika Journal of Data Science, 1(2), 73–81. https://doi.org/10.60084/ijds.v1i2.133

Saputra, A., Sofyan, H., Kesuma, Z. M., Sasmita, N. R., Wichaidit, W., & Chongsuvivatwong, V. (2024). Spatial patterns of tuberculosis in Aceh Province during the COVID-19 pandemic: a geospatial autocorrelation assessment. IOP Conference Series: Earth and Environmental Science, 1356(1), 1–9. https://doi.org/10.1088/1755-1315/1356/1/012099

Sasmita, N. R., Khairul, M., Sofyan, H., Kruba, R., Mardalena, S., Dahlawy, A., Apriliansyah, F., Muliadi, M., Saputra, D. C. E., Noviandy, T. R., & Maula, A. W. (2023). A Statistical Clustering Approach: Mapping Population Indicators Through Probabilistic Analysis in Aceh Province, Indonesia. Infolitika Journal of Data Science, 1(2), 1–9. https://doi.org/https://doi.org/10.60084/ijds.v1i2.130

Segeth, K. (2018). Some splines produced by smooth interpolation. Applied Mathematics and Computation, 319(1), 387–394. https://doi.org/10.1016/j.amc.2017.04.022

Tierney, N., & Cook, D. (2023). Expanding Tidy Data Principles to Facilitate Missing Data Exploration, Visualization and Assessment of Imputations. Journal of Statistical Software, 105(7), 1–31. https://doi.org/10.18637/jss.v105.i07

Ulhaq, M. Z., Farid, M., Aziza, Z. I., Nuzullah, T. M. F., Syakir, F., & Sasmita, N. R. (2024). Forecasting Upwelling Phenomena in Lake Laut Tawar: A Semi-Supervised Learning Approach. Infolitika Journal of Data Science, 2(2), 53–61. https://doi.org/10.60084/ijds.v2i2.211

Wicher-Dysarz, J., Dysarz, T., & Jaskuła, J. (2022). Uncertainty in Determination of Meteorological Drought Zones Based on Standardized Precipitation Index in the Territory of Poland. International Journal of Environmental Research and Public Health, 19(23), 15797. https://doi.org/10.3390/ijerph192315797

Wu, L., Liu, X., & Ma, X. (2018). Spatio‐temporal temperature ­variations in the Chinese Yellow River basin from 1981 to 2013. Weather, 73(1), 27–33. https://doi.org/10.1002/wea.2956

Yasmin, A. A., Azahra, A. S., & Purwani, S. (2024). The application of cubic spline in rainfall modelling in Bogor and its impact on paddy production. Communications in Mathematical Biology and Neuroscience, 2024(1), 1–13. https://doi.org/10.28919/cmbn/8430

Zhou, H., Ren, H., Royer, P., Hou, H., & Yu, X.-Y. (2022). Big Data Analytics for Long-Term Meteorological Observations at Hanford Site. Atmosphere, 13(1), 1–17. https://doi.org/10.3390/atmos13010136




DOI: https://doi.org/10.31764/jtam.v9i1.27929

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Novi Reandy Sasmita, Novita Sari Saragih, Latifah Rahayu, Malfirah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: