Analysis of Rainbow Vertex Antimagic Coloring and its Application to Cryptographic Secret Sharing with Affine Cipher Technique

Dafik Dafik, Iftitahul Firdausiyah, Robiatul Adawiyah, Ika Hesti Agustin, Indah Lutfiyatul Mursyidah, Marsidi Marsidi

Abstract


Rainbow vertex antimagic coloring is a novel concept in graph theory that combines rainbow vertex connection with antimagic labeling. Rainbow vertex connection is a vertex coloring where each vertex in a simple connected graph G=(V,E) is connected by a path such that all interior vertices have distinct colors. The antimagic labeling assigns a bijective function f:E(G)→ {1,2,3,...,|E(G)|} to the edges, and the vertex weight w_f(v) = ∑_(e∈ E(v))▒〖f(e)〗, where E(v) is the set of edges adjacent to vertex 𝑣. A graph 𝐺 achieves rainbow vertex antimagic coloring if all its internal vertices have unique vertex weights. This research investigates the application of rainbow vertex antimagic coloring to Shadow D_2 (S_n) graphs and Amal(V_n,v,m) graphs in cryptographic secret sharing and encryption using the affine cipher technique. The study employs mathematical modeling, graph visualization tools, and cryptographic software to ensure methodological rigor. The encryption and decryption processes are evaluated based on effectiveness, including brute force test resistance, encryption time, and encryption size. The results demonstrate that rainbow vertex antimagic coloring is an effective method for dividing cryptographic keys into segments during the secret sharing stage and serves as a robust key in the affine cipher technique. The method offers significant advantages, including faster encryption times for Shadow D_2 (S_n) graphs compared to Amal(V_n,v,m) graphs and reduced encryption size for Amal(V_n,v,m) graphs. Both graphs exhibited strong resistance to brute force attacks. In conclusion, this study highlights the relevance of rainbow vertex antimagic coloring in advancing graph theory applications and its utility in developing secure and efficient cryptographic systems. These findings contribute to bridging theoretical graph concepts with practical cryptographic implementations.


Keywords


Rainbow Vertex Antimagic Coloring; Secret Sharing; Affine Cipher.

Full Text:

DOWNLOAD [PDF]

References


Agustin, I. H., Dafik, D., Nisviasari, R., Baihaki, R. I., Kurniawati, E. Y., Husain, S. K. S., & Nagaraja, V. (2024). On Rainbow Vertex Antimagic Coloring and Its Application to the Encryption Keystream Construction. Applied Mathematics and Information Sciences, 18(4), 783–794. https://doi.org/10.18576/amis/180411

Akadji, A. F., Katili, M. R., Nasib, S. K., & Yahya, N. I. (2021). Desimal: jurnal matematika. 4(2), 123–132. https://doi.org/10.24042/djm

Alfarisi, R., Dafik, Prihandini, R. M., Adawiyah, R., Albirri, E. R., & Agustin, I. H. (2019). Graceful Chromatic Number of Unicyclic Graphs. Journal of Physics: Conference Series, 1306(1), 012039. https://doi.org/10.1088/1742-6596/1306/1/012039

Cesati, M. (2023). A New Idea for RSA Backdoors. Cryptography, 7(3). https://doi.org/10.3390/cryptography7030045

Dafik, Agustin, I. H., Hasan, M., Adawiyah, R., Alfarisi, R., & Wardani, D. A. R. (2018). On the Locating Edge Domination Number of Comb Product of Graphs. Journal of Physics: Conference Series, 1022(1). https://doi.org/10.1088/1742-6596/1022/1/012003

Dafik, Agustin, I. H., Surahmat, Alfarisi, R., & Sy, S. (2017). On Non-Isolated Resolving Number Of Special Graphs And Their Operations. Far East Journal of Mathematical Sciences (FJMS), 102(10), 2473–2492. https://doi.org/10.17654/MS102102473

Dafik, Mursyidah, I. L., Agustin, I. H., Baihaki, R. I., Febrinanto, F. G., Husain, S. K. B. S., & Sunder, R. (2024). On Rainbow Vertex Antimagic Coloring and Its Application on STGNN Time Series Forecasting on Subsidized Diesel Consumption. IAENG International Journal of Applied Mathematics, 54(5), 984–996.

Fauziah, D. A., Dafik, Agustin, I. H., & Alfarisi, R. (2019). The rainbow vertex connection number of edge corona product graphs. IOP Conference Series: Earth and Environmental Science, 243(1). https://doi.org/10.1088/1755-1315/243/1/012020

Gembong, A. W., Slamin, Dafik, & Agustin, I. H. (2017). Bound of Distance Domination Number of Graph and Edge Comb Product Graph. Journal of Physics: Conference Series, 855(1). https://doi.org/10.1088/1742-6596/855/1/012014

Heggernes, P., Issac, D., Lauri, J., Lima, P. T., & Van Leeuwen, E. J. (2018). Rainbow vertex coloring bipartite graphs and chordal graphs. Leibniz International Proceedings in Informatics, LIPIcs, 117(83), 1–13. https://doi.org/10.4230/LIPIcs.MFCS.2018.83

Kamila, A. A. U. U., Dafik, Kristiana, A. I., Nisviasari, R., & Kurniawati, E. Y. (2023). On Rainbow Vertex Antimagic Coloring of Shell Related Graphs (Vol. 2). Atlantis Press International BV. https://doi.org/10.2991/978-94-6463-138-8_3

Khan, M. A., Quasim, M. T., Alghamdi, N. S., & Khan, M. Y. (2020). A Secure Framework for Authentication and Encryption Using Improved ECC for IoT-Based Medical Sensor Data. IEEE Access, 8, 52018–52027. https://doi.org/10.1109/ACCESS.2020.2980739

Krenn, S., & Lorünser, T. (2023). Verifiable Secret Sharing. 45–54. https://doi.org/10.1007/978-3-031-28161-7_7

Kristiana, A. I., Mursyidah, I. L., Dafik, D., Adawiyah, R., & Alfarisi, R. (2023). Local irregular vertex coloring of comb product by path graph and star graph. Discrete Mathematics, Algorithms and Applications, 15(6). https://doi.org/10.1142/S1793830922501488

Li, X. L., & Shi, Y. (2013). On the rainbow vertex-connection. Discussiones Mathematicae Graph Theory, 33(2), 307. https://doi.org/10.7151/dmgt.1664

Marsidi, Agustin, I. H., Dafik, Kurniawati, E. Y., & Nisviasari, R. (2022). The rainbow vertex antimagic coloring of tree graphs. Journal of Physics: Conference Series, 2157(1), 012019. https://doi.org/10.1088/1742-6596/2157/1/012019

Marsidi, M., Agustin, I. H., Dafik, D., & Kurniawati, E. Y. (2021). On Rainbow Vertex Antimagic Coloring of Graphs: A New Notion. CAUCHY: Jurnal Matematika Murni Dan Aplikasi, 7(1), 64–72. https://doi.org/10.18860/ca.v7i1.12796

Mohan, K. R., Rasappan, S., Murugesan, R., Kumaravel, S. K., & Elngar, A. A. (2022). Secret Information Sharing Using Probability and Bilinear Transformation (pp. 115–122). https://doi.org/10.1007/978-981-19-0182-9_12

Mursyidah, I. L., Ayu, A., Ulya, U., & Baihaki, I. (n.d.). Rainbow Vertex Connection Number on Some Special Graphs. 27–34.

Mursyidah, I. L., Dafik, Adawiyah, R., Kristiana, A. I., & Agustin, I. H. (2021). On local irregularity vertex coloring of comb product on star graphs. Journal of Physics: Conference Series, 1836(1), 012023. https://doi.org/10.1088/1742-6596/1836/1/012023

Mursyidah, I. L., Dafik, Kristiana, A. I., Agustin, I. H., Maylisa, I. N., & Alfarisi, R. (2023). On Rainbow Antimagic Coloring of Some Classes of Graphs (pp. 73–93). https://doi.org/10.2991/978-94-6463-138-8_8

Nisviasari, R., Dafik, Agustin, I. H., Kurniawati, E. Y., Maylisa, I. N., & Septory, B. J. (2022). Improving the robustness of the affine cipher by using a rainbow antimagic coloring. Journal of Physics: Conference Series, 2157(1), 012017. https://doi.org/10.1088/1742-6596/2157/1/012017

Panahi, P., Bayılmış, C., Çavuşoğlu, U., & Kaçar, S. (2021). Performance Evaluation of Lightweight Encryption Algorithms for IoT-Based Applications. Arabian Journal for Science and Engineering, 46(4), 4015–4037. https://doi.org/10.1007/s13369-021-05358-4

Phalakarn, K., Suppakitpaisarn, V., Attrapadung, N., & Matsuura, K. (2020). Constructive t-secure Homomorphic Secret Sharing for Low Degree Polynomials (pp. 763–785). https://doi.org/10.1007/978-3-030-65277-7_34

Septory, B. J., Utoyo, M. I., Dafik, Sulistiyono, B., & Agustin, I. H. (2021). On rainbow antimagic coloring of special graphs. Journal of Physics: Conference Series, 1836(1), 012016. https://doi.org/10.1088/1742-6596/1836/1/012016

Simamora, D. N. S., & Salman, A. N. M. (2015). The Rainbow (Vertex) Connection Number of Pencil Graphs. Procedia Computer Science, 74, 138–142. https://doi.org/10.1016/j.procs.2015.12.089

Wulandari, R. Y., & Simanjuntak, R. (2023). Distance antimagic labelings of product graphs. Electronic Journal of Graph Theory and Applications, 11(1), 111. https://doi.org/10.5614/ejgta.2023.11.1.9




DOI: https://doi.org/10.31764/jtam.v9i1.28037

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Dafik, Iftitahul Firdausiyah, Robiatul Adawiyah, Ika Hesti Agustin, Indah Lutfiyatul Mursyidah, Marsidi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: