Spatio-Temporal Median Polish Kriging with ARIMA Integration for Monthly Precipitation Interpolation in East Kalimantan
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Adiguna, I. B. A. P., Nuarsa, I. W., & Puspitha, N. L. P. R. (2021). Pengaruh Suhu Permukaan Laut terhadap Curah Hujan di Pulau Bali Tahun 2009-2018. Journal of Marine and Aquatic Sciences, 7(2), 214. https://doi.org/10.24843/jmas.2021.v07.i02.p10
Barbara, D., & Wu, X. (2003). An Approximate Median Polish Algorithm for Large Multidimensional Data Sets. Knowledge and Information Systems, 5(4), 416–438. https://doi.org/10.1007/s10115-003-0096-7
Cryer, J. D., & Chan, K.-S. (2008). Time Series Analysis with Applications in R (2nd ed.). Springer. https://doi.org/https://doi.org/10.1007/978-0-387-75959-3
de Medeiros, E. S., de Lima, R. R., de Olinda, R. A., Dantas, L. G., & dos Santos, C. A. C. (2019). Space-time kriging of precipitation: Modeling the large-scale variation with model GAMLSS. Water (Switzerland), 11(11), 1–16. https://doi.org/10.3390/w11112368
Han, L., Wang, L., Chen, H., Xu, Y., Sun, F., Reed, K., Deng, X., & Li, W. (2022). Impacts of Long-Term Urbanization on Summer Rainfall Climatology in Yangtze River Delta Agglomeration of China. Geophysical Research Letters, 49(13), 1–12. https://doi.org/10.1029/2021GL097546
Hengl, T., Heuvelink, G. B. M., & Rossiter, D. G. (2007). About Regression-Kriging: From Equations to Case Studies. Computers and Geosciences, 33(10), 1301–1315. https://doi.org/10.1016/j.cageo.2007.05.001
Hu, D. G., & Shu, H. (2019). Spatiotemporal interpolation of precipitation across Xinjiang, China using space-time CoKriging. Journal of Central South University, 26(3), 684–694. https://doi.org/10.1007/s11771-019-4039-1
Im, K. S., Pesaran, M. H., & Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of Econometrics, 115(1), 53–74. https://doi.org/10.1016/S0304-4076(03)00092-7
Islam, N., Kashem, A., Das, P., Ali, M. N., & Paul, S. (2024). Prediction of high-performance concrete compressive strength using deep learning techniques. Asian Journal of Civil Engineering, 25(1), 327–341. https://doi.org/10.1007/s42107-023-00778-z
Katipoğlu, O. M. (2022). Spatial analysis of seasonal precipitation using various interpolation methods in the Euphrates basin, Turkey. Acta Geophysica, 70(2), 859–878. https://doi.org/10.1007/s11600-022-00756-0
Martínez, W. A., Melo, C. E., & Melo, O. O. (2017). Median Polish Kriging for space–time analysis of precipitation. Spatial Statistics, 19(1), 1–20. https://doi.org/10.1016/j.spasta.2016.10.003
McClave, J., & Sincich, T. (2018). Statistics. Pearson.
Montero, J.-M., Fernández-Avilés, G., & Mateu, J. (2015). Spatial and Spatio-Temporal Geostatistical Modeling and Kriging (1st ed.). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118762387
Murthy, V., & Okunade, A. (2018). Is the health care price inflation in US urban areas stationary?: Evidence from panel unit root tests. Journal of Economics, Finance and Administrative Science, 23(44), 77–94. https://doi.org/10.1108/JEFAS-02-2017-0043
Ning, Y., Kazemi, H., & Tahmasebi, P. (2022). A comparative machine learning study for time series oil production forecasting: ARIMA, LSTM, and Prophet. Computers and Geosciences, 164(1), 1–11. https://doi.org/10.1016/j.cageo.2022.105126
Pertiwi, M. A., Kahar, S., Sasmito, B., & Marpaung, S. (2015). Analisis Korelasi Suhu Permukaan Laut Terhadap Curah Hujan dengan Metode Penginderaan Jauh Tahun 2012-2013 (Studi Kasus : Kota Semarang). Jurnal Geodesi Undip Januari, 4(1), 61–71. https://doi.org/https://doi.org/10.14710/jgundip.2015.7639
Rohma, N. N., Pramoedyo, H., & Astutik, S. (2023). Perbandingan Pendugaan Metode Ordinary Kriging dan Metode Ordinary Kriging dengan Teknik Jackknife. MAp (Mathematics and Applications) Journal, 2(4), 101–111. https://doi.org/https://doi.org/10.15548/map.v4i2.4736
Ruslana, Z. N., Prihatin, R. S., Sulistiyowati, S., & Nugroho, K. (2024). Application of the Arima Method to Prediction Maximum Rainfall at Central Java Climatological Station. Sinkron, 8(4), 2135–2141. https://doi.org/10.33395/sinkron.v8i4.13984
Sari, F. P., & Atsidiqi, S. N. (2020). Investigasi Pengaruh Skenario Modifikasi Urbanisasi pada Perubahan Hujan di Kota Makassar. Prosiding SNFA (Seminar Nasional Fisika Dan Aplikasinya), 5(1), 85–96. https://doi.org/10.20961/prosidingsnfa.v5i0.46597
Sarker, B., & Khan, F. (2020). Nexus between foreign direct investment and economic growth in Bangladesh: an augmented autoregressive distributed lag bounds testing approach. Financial Innovation, 6(1), 1–18. https://doi.org/10.1186/s40854-019-0164-y
Shand, L., & Li, B. (2017). Modeling nonstationarity in space and time. Biometrics, 73(3), 759–768. https://doi.org/10.1111/biom.12656
Sudinda, T. W. (2020). Pemanfaatan Air Hujan untuk Memenuhi Kebutuhan Air Baku Jangka Panjang Ibu Kota Negara. Construction Engineering and Sustainable Development, 3(1), 1–48. https://www.e-journal.trisakti.ac.id/index.php/sipil/article/view/13654
Sun, Y., & Genton, M. G. (2012). Functional Median Polish. Journal of Agricultural, Biological, and Environmental Statistics, 17(3), 354–376. https://doi.org/10.1007/s13253-012-0096-8
Tutmez, B. (2014). Analyzing non-stationarity in cement stone pit by median polish interpolation: a case study. Journal of Applied Statistics, 41(2), 454–466. https://doi.org/10.1080/02664763.2013.840274
Verdin, A., Funk, C., Rajagopalan, B., & Kleiber, W. (2016). Kriging and local polynomial methods for blending satellite-derived and gauge precipitation estimates to support hydrologic early warning systems. IEEE Transactions on Geoscience and Remote Sensing, 54(5), 2552–2562. https://doi.org/10.1109/TGRS.2015.2502956
Yang, X., Yang, Y., Li, K., & Wu, R. (2020). Estimation and characterization of annual precipitation based on spatiotemporal kriging in the Huanghuaihai basin of China during 1956–2016. Stochastic Environmental Research and Risk Assessment, 34(9), 1407–1420. https://doi.org/10.1007/s00477-019-01757-0
Zhang, W., Liu, D., Zheng, S., Liu, S., Loáiciga, H. A., & Li, W. (2020). Regional precipitation model based on geographically and temporally weighted regression kriging. Remote Sensing, 12(16), 1–19. https://doi.org/10.3390/RS12162547
DOI: https://doi.org/10.31764/jtam.v9i2.29570
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Friendtika Miftaqul Jannah, Rahma Fitriani, Henny Pramoedyo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: