Spatio-Temporal Median Polish Kriging with ARIMA Integration for Monthly Precipitation Interpolation in East Kalimantan

Friendtika Miftaqul Jannah, Rahma Fitriani, Henny Pramoedyo

Abstract


Precipitation can lead to disasters like droughts and floods, necessitating accurate interpolation methods. Traditional spatio-temporal kriging often struggles with outliers, which can reduce estimation reliability. This study develops spatio-temporal median polish kriging, which separates spatial and temporal components to improve interpolation accuracy, particularly in handling outliers. Unlike conventional kriging, this method integrates median polish kriging for robust spatial interpolation and ARIMA for capturing temporal trends, making it more effective in dynamic precipitation pattern estimation. The study utilizes precipitation data from seven observation posts in East Kalimantan (2021–2023). The data is processed using a combination of spatial, temporal, and spatial-temporal modeling approaches to capture precipitation variations accurately. For spatial interpolation, the study applies kriging in median polish spatial effects. The best semivariogram model for spatial effects is exponential, which is used to characterize spatial dependencies. To capture temporal effects of median polish, the study employs ARIMA(1,2,0), which models precipitation trends over time and helps manage temporal fluctuations. For residuals of median polish interpolation, the study applies spatio-temporal kriging, using a simple sum-metric model as the best approach to integrate both spatial and temporal dependencies. The semivariograms selected for spatial, temporal, and joint dependencies follow a gaussian structure. The interpolation results reveal that precipitation increases toward the west, with precipitation patterns also showing an increasing trend over time. These findings demonstrate the model’s capability in capturing spatial and temporal precipitation variations while addressing potential outliers through the median polish approach. By utilizing a robust statistical framework, the model reduces the influence of extreme values, leading to more reliable precipitation estimates. However, this study utilizes only seven observation posts. The limited number of observation posts may introduce uncertainty in regions distant from measurement stations and affect the model's accuracy. Therefore, further research should test this model by applying it to different geographical regions with a more extensive dataset.

Keywords


ARIMA; Kriging; Median Polish; Precipitation; Spatio-Temporal.

Full Text:

DOWNLOAD [PDF]

References


Adiguna, I. B. A. P., Nuarsa, I. W., & Puspitha, N. L. P. R. (2021). Pengaruh Suhu Permukaan Laut terhadap Curah Hujan di Pulau Bali Tahun 2009-2018. Journal of Marine and Aquatic Sciences, 7(2), 214. https://doi.org/10.24843/jmas.2021.v07.i02.p10

Barbara, D., & Wu, X. (2003). An Approximate Median Polish Algorithm for Large Multidimensional Data Sets. Knowledge and Information Systems, 5(4), 416–438. https://doi.org/10.1007/s10115-003-0096-7

Cryer, J. D., & Chan, K.-S. (2008). Time Series Analysis with Applications in R (2nd ed.). Springer. https://doi.org/https://doi.org/10.1007/978-0-387-75959-3

de Medeiros, E. S., de Lima, R. R., de Olinda, R. A., Dantas, L. G., & dos Santos, C. A. C. (2019). Space-time kriging of precipitation: Modeling the large-scale variation with model GAMLSS. Water (Switzerland), 11(11), 1–16. https://doi.org/10.3390/w11112368

Han, L., Wang, L., Chen, H., Xu, Y., Sun, F., Reed, K., Deng, X., & Li, W. (2022). Impacts of Long-Term Urbanization on Summer Rainfall Climatology in Yangtze River Delta Agglomeration of China. Geophysical Research Letters, 49(13), 1–12. https://doi.org/10.1029/2021GL097546

Hengl, T., Heuvelink, G. B. M., & Rossiter, D. G. (2007). About Regression-Kriging: From Equations to Case Studies. Computers and Geosciences, 33(10), 1301–1315. https://doi.org/10.1016/j.cageo.2007.05.001

Hu, D. G., & Shu, H. (2019). Spatiotemporal interpolation of precipitation across Xinjiang, China using space-time CoKriging. Journal of Central South University, 26(3), 684–694. https://doi.org/10.1007/s11771-019-4039-1

Im, K. S., Pesaran, M. H., & Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of Econometrics, 115(1), 53–74. https://doi.org/10.1016/S0304-4076(03)00092-7

Islam, N., Kashem, A., Das, P., Ali, M. N., & Paul, S. (2024). Prediction of high-performance concrete compressive strength using deep learning techniques. Asian Journal of Civil Engineering, 25(1), 327–341. https://doi.org/10.1007/s42107-023-00778-z

Katipoğlu, O. M. (2022). Spatial analysis of seasonal precipitation using various interpolation methods in the Euphrates basin, Turkey. Acta Geophysica, 70(2), 859–878. https://doi.org/10.1007/s11600-022-00756-0

Martínez, W. A., Melo, C. E., & Melo, O. O. (2017). Median Polish Kriging for space–time analysis of precipitation. Spatial Statistics, 19(1), 1–20. https://doi.org/10.1016/j.spasta.2016.10.003

McClave, J., & Sincich, T. (2018). Statistics. Pearson.

Montero, J.-M., Fernández-Avilés, G., & Mateu, J. (2015). Spatial and Spatio-Temporal Geostatistical Modeling and Kriging (1st ed.). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118762387

Murthy, V., & Okunade, A. (2018). Is the health care price inflation in US urban areas stationary?: Evidence from panel unit root tests. Journal of Economics, Finance and Administrative Science, 23(44), 77–94. https://doi.org/10.1108/JEFAS-02-2017-0043

Ning, Y., Kazemi, H., & Tahmasebi, P. (2022). A comparative machine learning study for time series oil production forecasting: ARIMA, LSTM, and Prophet. Computers and Geosciences, 164(1), 1–11. https://doi.org/10.1016/j.cageo.2022.105126

Pertiwi, M. A., Kahar, S., Sasmito, B., & Marpaung, S. (2015). Analisis Korelasi Suhu Permukaan Laut Terhadap Curah Hujan dengan Metode Penginderaan Jauh Tahun 2012-2013 (Studi Kasus : Kota Semarang). Jurnal Geodesi Undip Januari, 4(1), 61–71. https://doi.org/https://doi.org/10.14710/jgundip.2015.7639

Rohma, N. N., Pramoedyo, H., & Astutik, S. (2023). Perbandingan Pendugaan Metode Ordinary Kriging dan Metode Ordinary Kriging dengan Teknik Jackknife. MAp (Mathematics and Applications) Journal, 2(4), 101–111. https://doi.org/https://doi.org/10.15548/map.v4i2.4736

Ruslana, Z. N., Prihatin, R. S., Sulistiyowati, S., & Nugroho, K. (2024). Application of the Arima Method to Prediction Maximum Rainfall at Central Java Climatological Station. Sinkron, 8(4), 2135–2141. https://doi.org/10.33395/sinkron.v8i4.13984

Sari, F. P., & Atsidiqi, S. N. (2020). Investigasi Pengaruh Skenario Modifikasi Urbanisasi pada Perubahan Hujan di Kota Makassar. Prosiding SNFA (Seminar Nasional Fisika Dan Aplikasinya), 5(1), 85–96. https://doi.org/10.20961/prosidingsnfa.v5i0.46597

Sarker, B., & Khan, F. (2020). Nexus between foreign direct investment and economic growth in Bangladesh: an augmented autoregressive distributed lag bounds testing approach. Financial Innovation, 6(1), 1–18. https://doi.org/10.1186/s40854-019-0164-y

Shand, L., & Li, B. (2017). Modeling nonstationarity in space and time. Biometrics, 73(3), 759–768. https://doi.org/10.1111/biom.12656

Sudinda, T. W. (2020). Pemanfaatan Air Hujan untuk Memenuhi Kebutuhan Air Baku Jangka Panjang Ibu Kota Negara. Construction Engineering and Sustainable Development, 3(1), 1–48. https://www.e-journal.trisakti.ac.id/index.php/sipil/article/view/13654

Sun, Y., & Genton, M. G. (2012). Functional Median Polish. Journal of Agricultural, Biological, and Environmental Statistics, 17(3), 354–376. https://doi.org/10.1007/s13253-012-0096-8

Tutmez, B. (2014). Analyzing non-stationarity in cement stone pit by median polish interpolation: a case study. Journal of Applied Statistics, 41(2), 454–466. https://doi.org/10.1080/02664763.2013.840274

Verdin, A., Funk, C., Rajagopalan, B., & Kleiber, W. (2016). Kriging and local polynomial methods for blending satellite-derived and gauge precipitation estimates to support hydrologic early warning systems. IEEE Transactions on Geoscience and Remote Sensing, 54(5), 2552–2562. https://doi.org/10.1109/TGRS.2015.2502956

Yang, X., Yang, Y., Li, K., & Wu, R. (2020). Estimation and characterization of annual precipitation based on spatiotemporal kriging in the Huanghuaihai basin of China during 1956–2016. Stochastic Environmental Research and Risk Assessment, 34(9), 1407–1420. https://doi.org/10.1007/s00477-019-01757-0

Zhang, W., Liu, D., Zheng, S., Liu, S., Loáiciga, H. A., & Li, W. (2020). Regional precipitation model based on geographically and temporally weighted regression kriging. Remote Sensing, 12(16), 1–19. https://doi.org/10.3390/RS12162547




DOI: https://doi.org/10.31764/jtam.v9i2.29570

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Friendtika Miftaqul Jannah, Rahma Fitriani, Henny Pramoedyo

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: