Mathematical Model of the Central Lombok Regency People’s Interest towards the COVID-19 Vaccination

Elok Faiqotul Himmah, Riana Riana

Abstract


The COVID-19 vaccination program as an effort to prevent COVID-19 infection is still less attractive to the public in some areas in Indonesia, one of which is Central Lombok Regency. This is indicated by data on the number of complete vaccine recipients who still have not reached the threshold value for the formation of herd immunity. The factors that influence people's interest in COVID-19 vaccination can be analyzed using a mathematical model. This study aims to obtain a mathematical model of the interest of the people of Central Lombok Regency towards COVID-19 vaccination and to find out what factors most influence the interest of the people of Central Lombok Regency towards COVID-19 vaccination. The method used in this research is quantitative descriptive method. The data collection technique used a questionnaire that was given randomly to 332 respondents, namely the people of Central Lombok Regency in the age range of 12 to 70 years. Data analysis was based on multiple linear regression analysis with classical assumption tests, namely normality, multicollinearity, and heteroscedasticity tests. The results of the study obtained a mathematical model of the interest of the people of Central Lombok Regency towards COVID-19 vaccination. Variable of trust in the vaccine effectiveness and trust in the government are the factors that influenced the interest of the people of Central Lombok Regency towards COVID-19 vaccination.

Keywords


Mathematical model; Multiple linear regression; Interest to COVID-19 vaccination.

Full Text:

DOWNLOAD [PDF]

References


Ahmad, M., Akhtar, N., Jabeen, G., Irfan, M., Anser, M. K., Wu, H., & Işık, C. (2021). Intention-based critical factors affecting willingness to adopt novel coronavirus prevention in pakistan: Implications for future pandemics. International Journal of Environmental Research and Public Health, 18(11). https://doi.org/10.3390/ijerph18116167

Akther, T., & Nur, T. (2022). A model of factors influencing COVID-19 vaccine acceptance: A synthesis of the theory of reasoned action, conspiracy theory belief, awareness, perceived usefulness, and perceived ease of use. PLoS ONE, 17(1 January), 1–20. https://doi.org/10.1371/journal.pone.0261869

Aljarrah, M., Al-jarrah, Y., Galvão, R. K. H., Araújo, M. C. U., Fragoso, W. D., Silva, E. C., José, G. E., Soares, S. F. C., Paiva, H. M., Sari, T., & Kayral, I. E. (2017). Using stepwise regression to investigate c ustomers’ propensity to change cellular phone providers. Global Journal of Pure and Applied Mathematics, 13(9), 5013–5020.

Arayesh, M. B. (2015). Regression Analysis of Effective Factors on Increasing Factors on Trainer’s Motivation of the Red Crescent Society (A Case Study, Ilam, Iran). Procedia - Social and Behavioral Sciences, 205(May), 536–541. https://doi.org/10.1016/j.sbspro.2015.09.070

Chhetri, J. K., Chan, P., Arai, H., Park, S. C., Sriyani Gunaratne, P., Setiati, S., & Assantachai, P. (2020). Prevention of COVID-19 in Older Adults: A Brief Guidance from the International Association for Gerontology and Geriatrics (IAGG) Asia/Oceania Region. Journal of Nutrition, Health and Aging, 24(5), 471–472. https://doi.org/10.1007/s12603-020-1359-7

Faturohman, T., Kengsiswoyo, G. A. N., Harapan, H., Zailani, S., Rahadi, R. A., & Arief, N. N. (2021). Factors influencing COVID-19 vaccine acceptance in Indonesia: an adoption of Technology Acceptance Model. F1000Research, 10, 476. https://doi.org/10.12688/f1000research.53506.1

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2018). Multivariate Data Analysis (8 th). Cengage Learning.

Halunga, A. G., Orme, C. D., & Yamagata, T. (2017). A heteroskedasticity robust Breusch–Pagan test for Contemporaneous correlation in dynamic panel data models. In Journal of Econometrics (Vol. 198, Issue 2). https://doi.org/10.1016/j.jeconom.2016.12.005

Harapan, H., Anwar, S., Setiawan, A. M., & Sasmono, R. T. (2016). Dengue vaccine acceptance and associated factors in Indonesia: A community-based cross-sectional survey in Aceh. Vaccine, 34(32), 3670–3675. https://doi.org/10.1016/j.vaccine.2016.05.026

Harapan, H., Wagner, A. L., Yufika, A., Winardi, W., Anwar, S., Gan, A. K., Setiawan, A. M., Rajamoorthy, Y., Sofyan, H., & Mudatsir, M. (2020). Acceptance of a COVID-19 Vaccine in Southeast Asia: A Cross-Sectional Study in Indonesia. Frontiers in Public Health, 8(July), 1–8. https://doi.org/10.3389/fpubh.2020.00381

Himmah, E. F., & Kaestria, R. (2022). Path Analysis to Determine the Effect of Learning Outcomes of Prerequisite Mathematics on Learning Outcomes of Expert Systems Courses. Numerical, 6(1). https://doi.org/https://doi.org/10.25217/numerical.v6i1.1625

Irfan, M., Shahid, A. L., Ahmad, M., Iqbal, W., Elavarasan, R. M., Ren, S., & Hussain, A. (2021). Assessment of public intention to get vaccination against COVID‐19 Evidence. Journal of Evaluation in Clinical Practice, 28(1), 63–73. https://doi.org/10.1111/jep.13611

Lasmita, Y., Misnaniarti, & Idris, H. (2021). Analisis Penerimaan Vaksinasi Covid-19 di Kalangan Masyarakat. 9(4), 195–204. https://doi.org/10.29406/jkmk.v9i4.3056

Lazarus, J. V., Ratzan, S. C., Palayew, A., Gostin, L. O., Larson, H. J., Rabin, K., Kimball, S., & El-Mohandes, A. (2021). A global survey of potential acceptance of a COVID-19 vaccine. Nature Medicine, 27(2), 225–228. https://doi.org/10.1038/s41591-020-1124-9

Memon, M. A., Ting, H., Cheah, J.-H., Thurasamy, R., Chuah, F., & Cham, T. H. (2020). Sample Size for Survey Research: Review and Recommendations. Journal of Applied Structural Equation Modeling, 4(2), i–xx. https://doi.org/10.47263/jasem.4(2)01

Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of Cardiac Anaesthesia, 22(1), 67–72. https://doi.org/10.4103/aca.ACA_157_18

Murbiah, & Wahyudi, J. T. (2021). Enhancing Of Community Readiness For COVID-19. Proceeding of the 4th International Conference on Interprofessional Health Collaboration and Community Empowerment, December, 14–16.

Olliaro, P., Torreele, E., & Vaillant, M. (2021). COVID-19 vaccine efficacy and effectiveness—the elephant (not) in the room. The Lancet Microbe, 2(7), e279–e280. https://doi.org/10.1016/S2666-5247(21)00069-0

Or Caspi, Michael J. Smart, R. B. N. (2020). Herd immunity: Understanding Covid-19 by Haley etal. Ann Oncol, January, 19–21.

Paloyo, S. R., Caballes, A. B., Hilvano-Cabungcal, A. M., & De Castro, L. (2022). Prioritizing the vulnerable over the susceptible for COVID-19 vaccination. Developing World Bioethics, 22(3), 162–169. https://doi.org/10.1111/dewb.12327

Patel, R., Kaki, M., Potluri, V. S., Kahar, P., & Khanna, D. (2022). A comprehensive review of SARS-CoV-2 vaccines: Pfizer, Moderna & Johnson & Johnson. Human Vaccines and Immunotherapeutics, 18(1). https://doi.org/10.1080/21645515.2021.2002083

Pelegrín-Borondo, J., Arias-Oliva, M., Almahameed, A. A., & Prado Román, M. (2021). Covid-19 vaccines: A model of acceptance behavior in the healthcare sector. European Research on Management and Business Economics, 27(3). https://doi.org/10.1016/j.iedeen.2021.100171

Shamaan, N. A., Shukor, M. S., Masdor, N. A., Sabullah, M. K., & Shukor, M. Y. (2015). Testing the Normality of Residuals on Regression Model for the Growth of Moraxella sp. B on Monobromoacetic Acid. Bulletin of Environmental Science and Sustainable Management (e-ISSN 2716-5353), 3(1), 16–18. https://doi.org/10.54987/bessm.v3i1.263

Shrestha, N. (2020). Detecting Multicollinearity in Regression Analysis. American Journal of Applied Mathematics and Statistics, 8(2), 39–42. https://doi.org/10.12691/ajams-8-2-1

Taber, K. S. (2018). The Use of Cronbach’s Alpha When Developing and Reporting Research Instruments in Science Education. Research in Science Education, 48(6), 1273–1296. https://doi.org/10.1007/s11165-016-9602-2

Toharudin, T., Pontoh, R. S., Caraka, R. E., Zahroh, S., Kendogo, P., Sijabat, N., Sari, M. D. P., Gio, P. U., Basyuni, M., & Pardamean, B. (2021). National vaccination and local intervention impacts on covid-19 cases. Sustainability (Switzerland), 13(15). https://doi.org/10.3390/su13158282

Ursachi, G., Horodnic, I. A., & Zait, A. (2015). How Reliable are Measurement Scales? External Factors with Indirect Influence on Reliability Estimators. Procedia Economics and Finance, 20(15), 679–686. https://doi.org/10.1016/s2212-5671(15)00123-9

Yasir, A., Hu, X., Ahmad, M., Rauf, A., Shi, J., & Nasir, S. A. (2020). Modeling impact of word of mouth and E-government on online social presence during COVID-19 outbreak: A multi-mediation approach. International Journal of Environmental Research and Public Health, 17(8). https://doi.org/10.3390/ijerph17082954

Yufika, A., Wagner, A. L., Nawawi, Y., Wahyuniati, N., Anwar, S., Yusri, F., Haryanti, N., Wijayanti, N. P., Rizal, R., Fitriani, D., Maulida, N. F., Syahriza, M., Ikram, I., Fandoko, T. P., Syahadah, M., Asrizal, F. W., Aletta, A., Haryanto, S., Jamil, K. F., … Harapan, H. (2020). Parents’ hesitancy towards vaccination in Indonesia: A cross-sectional study in Indonesia. Vaccine, 38(11), 2592–2599. https://doi.org/10.1016/j.vaccine.2020.01.072




DOI: https://doi.org/10.31764/jtam.v7i1.10310

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Elok Faiqotul Himmah, Riana Riana

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: