Dilated Convolutional Neural Network for Skin Cancer Classification Based on Image Data

Uswatun Khasanah, Bayu Surarso, Farikhin Farikhin

Abstract


Skin cancer is a disorder of cell growth in the skin. Skin cancer has a big impact, causing physical disabilities that can be seen directly and high treatment costs. In addition, skin cancer also causes death if nor treated properly. Generally, dermatologists diagnose the presence of skin cancer in the human body by using the Biopsy process. In this study, the Dilated Convolutional Neural Network method was used to classify skin cancer image data. Dilated Convolutional Neural Network method is a development method of the Convolutional Neural Network method by modifying the dilation factors. The Dilated Convolutional Neural Network method is divided into two stages, including feature extraction and fully connected layer. The data used in this study is HAM1000 dataset. The data are dermoscopic image datasets which consists of 10015 images data from 7 types of skin cancer. This study conducted several experimental scenarios of changes in the value of d, which are 2,4,6, and 8 to get the optimal results. The parameters used in this study are epoch = 100, minibatch size = 8, learning rate = 0.1, and dropout = 0.5. The best results in this study were obtained with value of d=2 with the value of accuracy is 85.67% and the sensitivity is 65.48%.

Keywords


Classification; Image data; Dilated convolutional neural network method; Skin cancer.

Full Text:

DOWNLOAD [PDF]

References


Aprianto, K. (2021). Brain Tumors Detection By Using Convolutional Neural Networks and Selection of Thresholds By Histogram Selection. Jurnal Ilmu Komputer Dan Informasi, 14(2), 83–89. https://doi.org/10.21609/jiki.v14i2.859

Caraka, B., Sumbodo, B. A. A., & Candradewi, I. (2017). Klasifikasi Sel Darah Putih Menggunakan Metode Support Vector Machine (SVM) Berbasis Pengolahan Citra Digital. IJEIS (Indonesian Journal of Electronics and Instrumentation Systems), 7(1), 25. https://doi.org/10.22146/ijeis.15420

Chakraborty, R., Zhen, X., Vogt, N., Bendlin, B., & Singh, V. (2019). Dilated Convolutional Neural Networks for Sequential Manifold-Valued Data. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob, 10620–10630. https://doi.org/10.1109/ICCV.2019.01072

Codella, N., Rotemberg, V., Tschandl, P., Celebi, M. E., Dusza, S., Gutman, D., Helba, B., Kalloo, A., Liopyris, K., Marchetti, M., Kittler, H., & Halpern, A. (2019). Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC). http://arxiv.org/abs/1902.03368

Council, C. (2020). Understanding Skin Cancer. In SOS Print and Media Group.

Demir, F., Sobahi, N., Siuly, S., & Sengur, A. (2021). Exploring Deep Learning Features for Automatic Classification of Human Emotion Using EEG Rhythms. IEEE Sensors Journal, 21(13), 14923–14930. https://doi.org/10.1109/JSEN.2021.3070373

Fu’adah, Y. N., Pratiwi, N. C., Pramudito, M. A., & Ibrahim, N. (2020). Convolutional Neural Network (CNN) for Automatic Skin Cancer Classification System. IOP Conference Series: Materials Science and Engineering, 982(1). https://doi.org/10.1088/1757-899X/982/1/012005

Indolia, S., Goswami, A. K., Mishra, S. P., & Asopa, P. (2018). Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach. Procedia Computer Science (ICCIDS), 132, 679–688. https://doi.org/10.1016/j.procs.2018.05.069

Khalifa, N. E. M., Taha, M. H. N., Ezzat Ali, D., Slowik, A., & Hassanien, A. E. (2020). Artificial intelligence technique for gene expression by tumor RNA-Seq Data: A novel optimized deep learning approach. IEEE Access, 8, 22874–22883. https://doi.org/10.1109/ACCESS.2020.2970210

Krizhevsky, A., Sutskever, I., & Hinton, geoffery E. (2007). ImageNet Classification with Deep Convolutional Neural Networks. Handbook of Approximation Algorithms and Metaheuristics, 60-1-60–16. https://doi.org/10.1201/9781420010749

Labach, A., Salehinejad, H., & Valaee, S. (2019). Survey of Dropout Methods for Deep Neural Networks. http://arxiv.org/abs/1904.13310

Lei, X., Pan, H., & Huang, X. (2019). A dilated cnn model for image classification. IEEE Access, 7, 124087–124095. https://doi.org/10.1109/ACCESS.2019.2927169

Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D. D., & Chen, M. (2014). Medical image classification with convolutional neural network. 2014 13th International Conference on Control Automation Robotics and Vision, ICARCV 2014, 2014(December), 844–848. https://doi.org/10.1109/ICARCV.2014.7064414

Li, X., Zhai, M., & Sun, J. (2021). DDCNNC: Dilated and depthwise separable convolutional neural Network for diagnosis COVID-19 via chest X-ray images. International Journal of Cognitive Computing in Engineering, 2(March), 71–82. https://doi.org/10.1016/j.ijcce.2021.04.001

Lin, G., Wu, Q., Qiu, L., & Huang, X. (2018). Image super-resolution using a dilated convolutional neural network. Neurocomputing, 275, 1219–1230. https://doi.org/10.1016/j.neucom.2017.09.062

Marcot, B. G., & Hanea, A. M. (2021). What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis? Computational Statistics, 36(3), 2009–2031. https://doi.org/10.1007/s00180-020-00999-9

Maulana, F. F., & Rochmawati, N. (2019). Klasifikasi Citra Buah Menggunakan Convolutional Neural Network. Journal of Informatics and Computer Science (JINACS), 01(02), 104–108.

Naranjo-Torres, J., Mora, M., Hernández-García, R., Barrientos, R. J., Fredes, C., & Valenzuela, A. (2020). A review of convolutional neural network applied to fruit image processing. Applied Sciences (Switzerland), 10(10). https://doi.org/10.3390/app10103443

Nugroho, P. A., Fenriana, I., & Arijanto, R. (2020). Implementasi Deep Learning Menggunakan Convolutional Neural Network ( Cnn ) Pada Ekspresi Manusia. Algor, 2(1), 12–21.

Pratt, H., Coenen, F., Broadbent, D. M., Harding, S. P., & Zheng, Y. (2016). Convolutional Neural Networks for Diabetic Retinopathy. Procedia Computer Science, 90(July), 200–205. https://doi.org/10.1016/j.procs.2016.07.014

Putra, R. E., Tjandrasa, H., & Suciati, N. (2020). Severity Classification of Non-Proliferative Diabetic Retinopathy using Convolutional Support Vector Machine. International Journal of Intelligent Engineering and Systems, 13(4), 156–170. https://doi.org/10.22266/IJIES2020.0831.14

Qotrunnada, F. M., & Utomo, P. H. (2022). Metode Convolutional Neural Network untuk Klasifikasi Wajah Bermasker. PRISMA, 5, 799–807.

Ragab, D. A., Sharkas, M., Marshall, S., & Ren, J. (2019). Breast cancer detection using deep convolutional neural networks and support vector machines. PeerJ, 2019(1), 1–23. https://doi.org/10.7717/peerj.6201

Raja Subramanian, R., Achuth, D., Shiridi Kumar, P., kumar Reddy, K. N., Amara, S., & Chowdary, A. S. (2021). Skin cancer classification using Convolutional neural networks. Proceedings of the Confluence 2021: 11th International Conference on Cloud Computing, Data Science and Engineering, 13–19. https://doi.org/10.1109/Confluence51648.2021.9377155

Rumelhart, D. E., Hintont, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature Publishing Group, 323.

Tschandl, P., Rosendahl, C., & Kittler, H. (2018). Data descriptor: The HAM10000 dataset, A Large Collection of Multi-Source Dermatoscopic Images of Common Pigmented Skin Lesions. Scientific Data, 5, 1–9. https://doi.org/10.1038/sdata.2018.161

Wang, X., Lu, Y., Wang, Y., & Chen, W. B. (2018). Diabetic retinopathy stage classification using convolutional neural networks. Proceedings - 2018 IEEE 19th International Conference on Information Reuse and Integration for Data Science, IRI 2018, 465–471. https://doi.org/10.1109/IRI.2018.00074

Xu, X., Jiang, X., Ma, C., Du, P., Li, X., Lv, S., Yu, L., Chen, Y., Su, J., Lang, G., Li, Y., Zhao, H., Xu, K., Ruan, L., & Wu, W. (2020). Deep Learning System to Screen Coronavirus Disease 2019 Pneumonia. 1–29. http://arxiv.org/abs/2002.09334

Yohannes, R., & al Rivan, M. E. (2022). Klasifikasi Jenis Kanker Kulit Menggunakan CNN-SVM. Jurnal Algoritme, 2(2), 133–144. https://doi.org/10.35957/algoritme.v2i2.2363




DOI: https://doi.org/10.31764/jtam.v7i1.11667

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Uswatun Khasanah, Bayu Surarso, Farikhin

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: