Dilated Convolutional Neural Network for Skin Cancer Classification Based on Image Data
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Aprianto, K. (2021). Brain Tumors Detection By Using Convolutional Neural Networks and Selection of Thresholds By Histogram Selection. Jurnal Ilmu Komputer Dan Informasi, 14(2), 83–89. https://doi.org/10.21609/jiki.v14i2.859
Caraka, B., Sumbodo, B. A. A., & Candradewi, I. (2017). Klasifikasi Sel Darah Putih Menggunakan Metode Support Vector Machine (SVM) Berbasis Pengolahan Citra Digital. IJEIS (Indonesian Journal of Electronics and Instrumentation Systems), 7(1), 25. https://doi.org/10.22146/ijeis.15420
Chakraborty, R., Zhen, X., Vogt, N., Bendlin, B., & Singh, V. (2019). Dilated Convolutional Neural Networks for Sequential Manifold-Valued Data. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob, 10620–10630. https://doi.org/10.1109/ICCV.2019.01072
Codella, N., Rotemberg, V., Tschandl, P., Celebi, M. E., Dusza, S., Gutman, D., Helba, B., Kalloo, A., Liopyris, K., Marchetti, M., Kittler, H., & Halpern, A. (2019). Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC). http://arxiv.org/abs/1902.03368
Council, C. (2020). Understanding Skin Cancer. In SOS Print and Media Group.
Demir, F., Sobahi, N., Siuly, S., & Sengur, A. (2021). Exploring Deep Learning Features for Automatic Classification of Human Emotion Using EEG Rhythms. IEEE Sensors Journal, 21(13), 14923–14930. https://doi.org/10.1109/JSEN.2021.3070373
Fu’adah, Y. N., Pratiwi, N. C., Pramudito, M. A., & Ibrahim, N. (2020). Convolutional Neural Network (CNN) for Automatic Skin Cancer Classification System. IOP Conference Series: Materials Science and Engineering, 982(1). https://doi.org/10.1088/1757-899X/982/1/012005
Indolia, S., Goswami, A. K., Mishra, S. P., & Asopa, P. (2018). Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach. Procedia Computer Science (ICCIDS), 132, 679–688. https://doi.org/10.1016/j.procs.2018.05.069
Khalifa, N. E. M., Taha, M. H. N., Ezzat Ali, D., Slowik, A., & Hassanien, A. E. (2020). Artificial intelligence technique for gene expression by tumor RNA-Seq Data: A novel optimized deep learning approach. IEEE Access, 8, 22874–22883. https://doi.org/10.1109/ACCESS.2020.2970210
Krizhevsky, A., Sutskever, I., & Hinton, geoffery E. (2007). ImageNet Classification with Deep Convolutional Neural Networks. Handbook of Approximation Algorithms and Metaheuristics, 60-1-60–16. https://doi.org/10.1201/9781420010749
Labach, A., Salehinejad, H., & Valaee, S. (2019). Survey of Dropout Methods for Deep Neural Networks. http://arxiv.org/abs/1904.13310
Lei, X., Pan, H., & Huang, X. (2019). A dilated cnn model for image classification. IEEE Access, 7, 124087–124095. https://doi.org/10.1109/ACCESS.2019.2927169
Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D. D., & Chen, M. (2014). Medical image classification with convolutional neural network. 2014 13th International Conference on Control Automation Robotics and Vision, ICARCV 2014, 2014(December), 844–848. https://doi.org/10.1109/ICARCV.2014.7064414
Li, X., Zhai, M., & Sun, J. (2021). DDCNNC: Dilated and depthwise separable convolutional neural Network for diagnosis COVID-19 via chest X-ray images. International Journal of Cognitive Computing in Engineering, 2(March), 71–82. https://doi.org/10.1016/j.ijcce.2021.04.001
Lin, G., Wu, Q., Qiu, L., & Huang, X. (2018). Image super-resolution using a dilated convolutional neural network. Neurocomputing, 275, 1219–1230. https://doi.org/10.1016/j.neucom.2017.09.062
Marcot, B. G., & Hanea, A. M. (2021). What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis? Computational Statistics, 36(3), 2009–2031. https://doi.org/10.1007/s00180-020-00999-9
Maulana, F. F., & Rochmawati, N. (2019). Klasifikasi Citra Buah Menggunakan Convolutional Neural Network. Journal of Informatics and Computer Science (JINACS), 01(02), 104–108.
Naranjo-Torres, J., Mora, M., Hernández-García, R., Barrientos, R. J., Fredes, C., & Valenzuela, A. (2020). A review of convolutional neural network applied to fruit image processing. Applied Sciences (Switzerland), 10(10). https://doi.org/10.3390/app10103443
Nugroho, P. A., Fenriana, I., & Arijanto, R. (2020). Implementasi Deep Learning Menggunakan Convolutional Neural Network ( Cnn ) Pada Ekspresi Manusia. Algor, 2(1), 12–21.
Pratt, H., Coenen, F., Broadbent, D. M., Harding, S. P., & Zheng, Y. (2016). Convolutional Neural Networks for Diabetic Retinopathy. Procedia Computer Science, 90(July), 200–205. https://doi.org/10.1016/j.procs.2016.07.014
Putra, R. E., Tjandrasa, H., & Suciati, N. (2020). Severity Classification of Non-Proliferative Diabetic Retinopathy using Convolutional Support Vector Machine. International Journal of Intelligent Engineering and Systems, 13(4), 156–170. https://doi.org/10.22266/IJIES2020.0831.14
Qotrunnada, F. M., & Utomo, P. H. (2022). Metode Convolutional Neural Network untuk Klasifikasi Wajah Bermasker. PRISMA, 5, 799–807.
Ragab, D. A., Sharkas, M., Marshall, S., & Ren, J. (2019). Breast cancer detection using deep convolutional neural networks and support vector machines. PeerJ, 2019(1), 1–23. https://doi.org/10.7717/peerj.6201
Raja Subramanian, R., Achuth, D., Shiridi Kumar, P., kumar Reddy, K. N., Amara, S., & Chowdary, A. S. (2021). Skin cancer classification using Convolutional neural networks. Proceedings of the Confluence 2021: 11th International Conference on Cloud Computing, Data Science and Engineering, 13–19. https://doi.org/10.1109/Confluence51648.2021.9377155
Rumelhart, D. E., Hintont, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature Publishing Group, 323.
Tschandl, P., Rosendahl, C., & Kittler, H. (2018). Data descriptor: The HAM10000 dataset, A Large Collection of Multi-Source Dermatoscopic Images of Common Pigmented Skin Lesions. Scientific Data, 5, 1–9. https://doi.org/10.1038/sdata.2018.161
Wang, X., Lu, Y., Wang, Y., & Chen, W. B. (2018). Diabetic retinopathy stage classification using convolutional neural networks. Proceedings - 2018 IEEE 19th International Conference on Information Reuse and Integration for Data Science, IRI 2018, 465–471. https://doi.org/10.1109/IRI.2018.00074
Xu, X., Jiang, X., Ma, C., Du, P., Li, X., Lv, S., Yu, L., Chen, Y., Su, J., Lang, G., Li, Y., Zhao, H., Xu, K., Ruan, L., & Wu, W. (2020). Deep Learning System to Screen Coronavirus Disease 2019 Pneumonia. 1–29. http://arxiv.org/abs/2002.09334
Yohannes, R., & al Rivan, M. E. (2022). Klasifikasi Jenis Kanker Kulit Menggunakan CNN-SVM. Jurnal Algoritme, 2(2), 133–144. https://doi.org/10.35957/algoritme.v2i2.2363
DOI: https://doi.org/10.31764/jtam.v7i1.11667
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Uswatun Khasanah, Bayu Surarso, Farikhin
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: