Percentile Bootstrap Interval on Univariate Local Polynomial Regression Prediction

Abil Mansyur, Elmanani Simamora, Ahmad Ahmad

Abstract


This study offers a new technique for constructing percentile bootstrap intervals to predict the regression of univariate local polynomials. Bootstrap regression uses resampling derived from paired and residual bootstrap methods. The main objective of this study is to perform a comparative analysis between the two resampling methods by considering the nominal coverage probability. Resampling uses a nonparametric bootstrap technique with the return method, where each sample point has an equal chance of being selected. The principle of nonparametric bootstrapping uses the original sample data as a source of diversity in contrast to parametric bootstrapping, where the variety comes from generating a particular distribution. The simulation results show that the paired and residual bootstrap interval coverage probabilities are close to nominal coverage. The results showed no significant difference between paired bootstrap interval and percentile residual. Increasing the bootstrap sample size sufficiently large gives the scatterplot smoothness of the confidence interval. Applying the smoothing parameter by choice gives a second-order polynomial regression with a smoother distribution than the first-order polynomial regression. The scatterplot shows that the second-degree polynomial regression can capture the data curvature feature compared to the first-degree polynomial. The bands made from second-degree polynomials give a narrower width than first-degree polynomials. In contrast, applying optimal smoothing parameters to the model provides different conclusions by using smoothing parameters based on choice. In addition to the differences based on the scatterplot, the bootstrap estimates of the coverage probability are also other. Selecting smoothing parameters based on a particular value provides probability coverage with the paired bootstrap method for the first-degree local polynomial regression is 0.93, while the second-degree local polynomial is 0.96. The probability of coverage based on the residual bootstrap method for the first-degree local polynomial regression is 0.95, while the second-degree local polynomial is 0.96. The probability coverage based on the optimal parameters of the paired bootstrap method for the first-degree local polynomial regression is 0.945, while the second-degree local polynomial is 0.93. The residual bootstrap method gives the first-degree local polynomial regression of 0.95, while the second-degree local polynomial is 0.93. In general, both bootstrap methods work well for estimating prediction confidence intervals.

Keywords


Simulation; Percentile Bootstrap; Local Polynomial; Regression; Paired Bootstrap; Residual Bootstrap.

Full Text:

DOWNLOAD [PDF]

References


Aguirre-Urreta, M., & Rönkkö, M. (2017). Statistical Inference with PLSc Using Bootstrap Confidence Intervals. https://www.researchgate.net/publication/315690307

Chernick, M. R., & LaBudde, R. A. (2014). An Introduction to Bootstrap Methods with Applications to R.

Cleveland, W. S. (1979). Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of the American Statistical Association, 74(368), 829–836. https://doi.org/10.1080/01621459.1979.10481038

Cleveland, W. S., Devlin, S. J., & Grosse, E. (1988). REGRESSION BY LOCAL FITIING Methods, Properties, and Computational Algorithms. In Journal of Econometrics (Vol. 37).

Cleveland, W. S., & Grosse, E. (1991). Computational methods for local regression. In Statistics and Computing (Vol. 1).

de Brabanter, K., de Brabanter, J., & de Moor, B. (2013). Derivative Estimation with Local Polynomial Fitting Irène Gijbels. In Journal of Machine Learning Research (Vol. 14).

Diciccio, T. J., & Efron, B. (1996). Bootstrap Confidence Intervals. Statistical Science, 11(3), 189–228.

Draper, N. R., & Smith, H. (1998). Applied Regression Analysis, Third Edition.

Efron, B., & Tibshirani, R. J. (1994). An Introduction to the Bootstrap. Chapman and Hall/CRC. https://doi.org/10.1201/9780429246593

Eubank, R. L., & Speckman, P. L. (1993). Confidence Bands in Nonparametric Regression. In Source: Journal of the American Statistical Association (Vol. 88, Issue 424).

Fan, J., & Gijbels, I. (1960). Local Polynomial Modelling and Its Applications. In Tensor Methods in Statistics P. McCullagh (Vol. 21, Issue 2).

Gultom, F. R. P., Solimun, S., & Nurjannah, N. (2022). Bootstrap Resampling in Gompertz Growth Model with Levenberg–Marquardt Iteration. JTAM (Jurnal Teori Dan Aplikasi Matematika), 6(4), 810. https://doi.org/10.31764/jtam.v6i4.8617

Hall, P., & Horowitz, J. (2013). A simple bootstrap method for constructing nonparametric confidence bands for functions. Annals of Statistics, 41(4), 1892–1921. https://doi.org/10.1214/13-AOS1137

Härdle, W., & Bowman, A. W. (1988). Bootstrapping in Nonparametric Regression: Local Adaptive Smoothing and Confidence Bands. Journal of the American Statistical Association, 83(401), 102–110. https://doi.org/10.1080/01621459.1988.10478572

Jung, K., Lee, J., Gupta, V., & Cho, G. (2019). Comparison of Bootstrap Confidence Interval Methods for GSCA Using a Monte Carlo Simulation. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.02215

Mansyur, A., & Simamora, E. (2022). Bootstrap-t Confidence Interval on Local Polynomial Regression Prediction. Mathematics and Statistics, 10(6), 1178–1193. https://doi.org/10.13189/ms.2022.100604

Özdemir, A. F. (2013). Comparing two independent groups: A test based on a one-step M-estimator and bootstrap-t. British Journal of Mathematical and Statistical Psychology, 66(2), 322–337. https://doi.org/10.1111/j.2044-8317.2012.02053.x

Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012). Editor’s Comments: A Critical Look at the Use of PLS-SEM in “MIS Quarterly” Author(s). In Source: MIS Quarterly (Vol. 36, Issue 1).

Simamora, E., Subanar, & Kartiko, S. H. (2015). Asymptotic property of semiparametric bootstrapping kriging variance in deterministic simulation. Applied Mathematical Sciences, 9(49–52). https://doi.org/10.12988/ams.2015.52104

Solci, C. C., Reisen, V. A., Rodrigues, P. C., Solci, C. C., & Reisen, V. A. (2022). Robust Local Bootstrap for WeaklyStationary Time Series in the Presence ofAdditive Outliers. https://doi.org/10.21203/rs.3.rs-2054445/v1

Wasserman, L. (2004). All of Nonparametric Statistics (G. Casella, S. Fienberg, & I. Olkin, Eds.; 1st ed.). Springer New York. https://doi.org/10.1007/978-0-387-21736-9

Wasserman, L. (2006). All of Statistics: A Concise Course in Statistical Inference (Vol. 26). Springer New York. https://doi.org/10.1007/978-0-387-21736-9

Xia, Y. (1998). Bias-Corrected Confidence Bands in Nonparametric Regression. In Source: Journal of the Royal Statistical Society. Series B (Statistical Methodology) (Vol. 60, Issue 4). https://www.jstor.org/stable/2985963




DOI: https://doi.org/10.31764/jtam.v7i1.11752

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Abil Mansyur, Elmanani Simamora, Ahmad

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: