Percentile Bootstrap Interval on Univariate Local Polynomial Regression Prediction
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Aguirre-Urreta, M., & Rönkkö, M. (2017). Statistical Inference with PLSc Using Bootstrap Confidence Intervals. https://www.researchgate.net/publication/315690307
Chernick, M. R., & LaBudde, R. A. (2014). An Introduction to Bootstrap Methods with Applications to R.
Cleveland, W. S. (1979). Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of the American Statistical Association, 74(368), 829–836. https://doi.org/10.1080/01621459.1979.10481038
Cleveland, W. S., Devlin, S. J., & Grosse, E. (1988). REGRESSION BY LOCAL FITIING Methods, Properties, and Computational Algorithms. In Journal of Econometrics (Vol. 37).
Cleveland, W. S., & Grosse, E. (1991). Computational methods for local regression. In Statistics and Computing (Vol. 1).
de Brabanter, K., de Brabanter, J., & de Moor, B. (2013). Derivative Estimation with Local Polynomial Fitting Irène Gijbels. In Journal of Machine Learning Research (Vol. 14).
Diciccio, T. J., & Efron, B. (1996). Bootstrap Confidence Intervals. Statistical Science, 11(3), 189–228.
Draper, N. R., & Smith, H. (1998). Applied Regression Analysis, Third Edition.
Efron, B., & Tibshirani, R. J. (1994). An Introduction to the Bootstrap. Chapman and Hall/CRC. https://doi.org/10.1201/9780429246593
Eubank, R. L., & Speckman, P. L. (1993). Confidence Bands in Nonparametric Regression. In Source: Journal of the American Statistical Association (Vol. 88, Issue 424).
Fan, J., & Gijbels, I. (1960). Local Polynomial Modelling and Its Applications. In Tensor Methods in Statistics P. McCullagh (Vol. 21, Issue 2).
Gultom, F. R. P., Solimun, S., & Nurjannah, N. (2022). Bootstrap Resampling in Gompertz Growth Model with Levenberg–Marquardt Iteration. JTAM (Jurnal Teori Dan Aplikasi Matematika), 6(4), 810. https://doi.org/10.31764/jtam.v6i4.8617
Hall, P., & Horowitz, J. (2013). A simple bootstrap method for constructing nonparametric confidence bands for functions. Annals of Statistics, 41(4), 1892–1921. https://doi.org/10.1214/13-AOS1137
Härdle, W., & Bowman, A. W. (1988). Bootstrapping in Nonparametric Regression: Local Adaptive Smoothing and Confidence Bands. Journal of the American Statistical Association, 83(401), 102–110. https://doi.org/10.1080/01621459.1988.10478572
Jung, K., Lee, J., Gupta, V., & Cho, G. (2019). Comparison of Bootstrap Confidence Interval Methods for GSCA Using a Monte Carlo Simulation. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.02215
Mansyur, A., & Simamora, E. (2022). Bootstrap-t Confidence Interval on Local Polynomial Regression Prediction. Mathematics and Statistics, 10(6), 1178–1193. https://doi.org/10.13189/ms.2022.100604
Özdemir, A. F. (2013). Comparing two independent groups: A test based on a one-step M-estimator and bootstrap-t. British Journal of Mathematical and Statistical Psychology, 66(2), 322–337. https://doi.org/10.1111/j.2044-8317.2012.02053.x
Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012). Editor’s Comments: A Critical Look at the Use of PLS-SEM in “MIS Quarterly” Author(s). In Source: MIS Quarterly (Vol. 36, Issue 1).
Simamora, E., Subanar, & Kartiko, S. H. (2015). Asymptotic property of semiparametric bootstrapping kriging variance in deterministic simulation. Applied Mathematical Sciences, 9(49–52). https://doi.org/10.12988/ams.2015.52104
Solci, C. C., Reisen, V. A., Rodrigues, P. C., Solci, C. C., & Reisen, V. A. (2022). Robust Local Bootstrap for WeaklyStationary Time Series in the Presence ofAdditive Outliers. https://doi.org/10.21203/rs.3.rs-2054445/v1
Wasserman, L. (2004). All of Nonparametric Statistics (G. Casella, S. Fienberg, & I. Olkin, Eds.; 1st ed.). Springer New York. https://doi.org/10.1007/978-0-387-21736-9
Wasserman, L. (2006). All of Statistics: A Concise Course in Statistical Inference (Vol. 26). Springer New York. https://doi.org/10.1007/978-0-387-21736-9
Xia, Y. (1998). Bias-Corrected Confidence Bands in Nonparametric Regression. In Source: Journal of the Royal Statistical Society. Series B (Statistical Methodology) (Vol. 60, Issue 4). https://www.jstor.org/stable/2985963
DOI: https://doi.org/10.31764/jtam.v7i1.11752
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Abil Mansyur, Elmanani Simamora, Ahmad
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: