Callable Bond's Value Analysis Using Binomial Interest Rate Tree Considering Early Redemption and Default Risks

Felivia Kusnadi, Devina Gabriella Tirtasaputra

Abstract


Bonds are known as one of low-risk investments and worth to be considered as a part of an investor's portfolio, however there are still underlying risks that could affect its price. This paper focuses on the effect of early redemption risk and default risk to a bond’s value. Using binomial interest rate tree method and its adjusted for default risk version, this paper wants to analyse how these risks affect Indonesian bonds’ values through simulations, while showing how these bonds can be used to construct the binomial interest rate trees. In the default risk simulation, more assumptions are made because of data limitations, which causes the first period recovery fraction to soar higher than the other periods. The analysis shows that, compared to present value of standard bonds, early redemption risk tends to cause the bond's present value to drop, while on the contrary, default risk tends to cause the bond's present value to rise. The cause of higher present value of bonds with default risk is explained by the high first period recovery fraction. 


Keywords


Callable Bond; Binomial Interest Rate Tree; Early Redemption Risk; Default Risk; Recovery Fraction.

Full Text:

PDF

References


Appolloni, E., Caramellino, L., & Zanette, A. (2013). A robust tree method for pricing American options with the Cox-Ingersoll-Ross interest rate model. IMA Journal of Management Mathematics, 26(4), 377–401. https://doi.org/10.1093/imaman/dpt030

Azizah, F., & Hidajat, I. (2016). Pengaruh Inflasi, Interest Rate (SBI), Jatuh Tempo Dan Nilai Tukar Terhadap Harga Obligasi. Jurnal Ilmu Dan Riset Manajemen, 5(2). http://jurnalmahasiswa.stiesia.ac.id/index.php/jirm/article/download/509/519

Baker, H. K., Filbeck, G., & Spieler, A. C. (2019). Debt Markets and Investments. https://doi.org/https://doi.org/10.1093/oso/9780190877439.003.0001

Batten, J. A., Khaw, K. L.-H., & Young, M. R. (2013). Convertible Bond Pricing Models. Journal of Economic Surveys, 28(5).

Black, F., Derman, E., & Toy, W. (1990). A One-Factor Model of Interest Rates and Its Application to Treasury. Financial Analysts Journal, 46(1), 33–39. http://www.jstor.org/page/info/about/policies/terms.jsp

Chen, H., Cui, R., He, Z., & Milbradt, K. (2014). Quantifying Liquidity And Default Risks Of Corporate Bonds Over The Business Cycle. http://www.nber.org/papers/w20638

Cox, J. C., Ingersoll, J. E., & Ross, S. A. (1985). A Theory of the Term Structure of Interest Rates A THEORY OF THE TERM STRUCTURE OF INTEREST RATES1. Econometrica, 53(2), 385–407. https://roycheng.cn/files/papers/interestRate/paper_Cox&Ingersoll&Ross_1985.pdf

Cox, J. C., Ross, S. A., Rubinstein, M., Ross, S., Modigliani, F., & Lear Publishing, E. (1979). Option Pricing: A Simplified Approach †. https://www.academia.edu/download/57985533/Cox.et.al1979.Option_Pricing.__A_Simplified_Approach.pdf

Díaz, A., & Tolentino, M. (2020). Risk management for bonds with embedded options. Mathematics, 8(5). https://doi.org/10.3390/MATH8050790

Elsaify, A., & Roussanov, N. (2016). Why Do Firms Issue Callable Bonds? https://repository.upenn.edu/fnce_papers/5

Fabozzi, F. J., & Fabozzi, F. A. (2021). Fundamentals of Institutional Asset Management (World Scientific Finance) (2020, World Scientific Publishing Company). https://www.worldscientific.com/doi/pdf/10.1142/9789811221590_0001

Finnerty, J. D. (1999). Adjusting the Binomial Model for Default Risk. The Journal of Portfolio Management, 25, 93–103. www.iijournals.com

He, T., Coolen, F. P. A., & Coolen-Maturi, T. (2019). Nonparametric predictive inference for European option pricing based on the binomial tree model. Journal of the Operational Research Society, 70(10), 1692–1708. https://doi.org/10.1080/01605682.2018.1495997

Ho, T. S., & Lee, S.-B. (1986). Term structure movements and pricing interest rate contingent claims. The Journal of Finance, 41(5), 1011–1029. https://www.academia.edu/download/47661045/Term_Structure_Movements_and_Pricing_Int20160730-3168-lwbiac.pdf

Hsu, P. H., Lee, H. H., Liu, A. Z., & Zhang, Z. (2015). Corporate innovation, default risk, and bond pricing. Journal of Corporate Finance, 35, 329–344. https://doi.org/10.1016/j.jcorpfin.2015.09.005

Ichsan, Syamni, G., Nurlela, & Rahman, A. (2013). Dampak Bi Rate, Tingkat Suku Bunga, Nilai Tukar, Dan Inflasi Terhadap Nilai Obligasi Pemerintah. Jurnal Keuangan Dan Perbankan, 17(2), 310–322. http://jurkubank.wordpress.com

Indonesian Central Securities Depository (KSEI). (2022). Obligasi Korporasi. https://www.ksei.co.id/services/registered-securities/corporate-bonds

Investing.com. (2022a). Indonesia 1-Year Bond Historical Data. https://www.investing.com/rates-bonds/indonesia-1-year-bond-yield-historical-data

Investing.com. (2022b). Indonesia Government Bonds. https://www.investing.com/rates-bonds/

Kalotay, A. J., Williams, G. O., & Fabozzi, F. J. (1993). A Model for Valuing Bonds and Embedded Options. Financial Analysts Journal, 35–46. https://doi.org/https://doi.org/10.2469/faj.v49.n3.35

Kim, Y. S., Stoyanov, S., Rachev, S., & Fabozzi, F. J. (2017). Another Look at the Ho-Lee Bond Option Pricing Model. The Journal of Derivatives, 25(4), 48–53. https://doi.org/10.3905/jod.2018.25.4.048

Markellos, R. N., & Psychoyios, D. (2018). Interest rate volatility and risk management: Evidence from CBOE Treasury options. Quarterly Review of Economics and Finance, 68, 190–202. https://doi.org/10.1016/j.qref.2017.08.005

Marsh, T. A., & Rosenfeld, E. R. (1983). Stochastic processes for interest rates and equilibrium bond prices. The Journal of Finance, 38(2), 635–646. https://doi.org/https://doi.org/10.2307/2328002

Park, K., Jung, M., & Lee, S. (2017). Pricing a Defaultable Convertible Bond by Simulation. Korean Journal of Financial Studies, 46(4), 947–965. https://doi.org/10.26845/kjfs.2017.09.46.4.947

PT ANTAM Tbk. (2022a). ANTAM’s Bond. https://www.antam.com/en/stock-information/antam-bond-i

PT ANTAM Tbk. (2022b). Corporate Credit Rating. https://www.antam.com/en/stock-information/corporate-credit-rating

Skalický, R., Zinecker, M., Balcerzak, A. P., Pietrzak, M. B., & Rogalska, E. (2022). Valuation of embedded options in non-marketable callable bonds: A new numerical approach. Technological and Economic Development of Economy, 28(4), 1115–1136. https://doi.org/10.3846/tede.2022.17060

Vasicek, O. (1977). An Equilibrium Characterization Of The Term Structure. Journal of Financial Economics, 5(2), 177–188. http://www.ressources-actuarielles.net/ext/isfa/1226.nsf/9c8e3fd4d8874d60c1257052003eced6/e11e4bc52747d1ddc125772400459afe/$FILE/Vasicek77.pdf

Zhang, Y., & Chen, L. (2021). A Study on Forecasting the Default Risk of Bond Based on XGboost Algorithm and Over-Sampling Method. Theoretical Economics Letters, 11(02), 258–267. https://doi.org/10.4236/tel.2021.112019




DOI: https://doi.org/10.31764/jtam.v7i2.12125

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Felivia Kusnadi, Devina Gabriella Tirtasaputra

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: