Probabilistic Prediction Model Using Bayesian Inference in Climate Field: A Systematic Literature
Abstract
Wildfires occur repeatedly every year and have a negative impact on natural ecosystems. Anticipation of wildfires is very necessary, therefore a prediction model is needed that can produce predictions with a good level of accuracy. One approach to develop probabilistic prediction models is Bayesian inference. The purpose of this research is to review the methods that can be used in developing probabilistic prediction models using the Bayesian approach. The methodology used is Systematic Literature Review (SLR) which can be used to provide a comprehensive review of Bayesian inference research in developing probabilistic prediction models. The research strategy used was the Boolean Technique applied to database sources including Scopus, IEEE Xplore, and ArXiv. The articles used have novelty and ease of explanation of Bayesian methods, especially predictions in the field of climate so that articles are selected based on inclusion and exclusion criteria. The results show that probabilistic models can provide more accurate results than deterministic models. The Bayesian Model Averaging (BMA) method is a widely used method because it is easy to implement and develop so that the prediction results can be more accurate. The development of probabilistic prediction models with a Bayesian approach has great potential to grow as seen from the development of the number of research publications over the past 5 years. The research position of probabilistic prediction models with Bayesian approaches in the field of climate is dominated by the research community in China with the main problems related to hydrology.
TRANSLATE with xEnglishArabicHebrewPolishBulgarianHindiPortugueseCatalanHmong DawRomanianChinese SimplifiedHungarianRussianChinese TraditionalIndonesianSlovakCzechItalianSlovenianDanishJapaneseSpanishDutchKlingonSwedishEnglishKoreanThaiEstonianLatvianTurkishFinnishLithuanianUkrainianFrenchMalayUrduGermanMalteseVietnameseGreekNorwegianWelshHaitian CreolePersian TRANSLATE with COPY THE URL BELOW BackEMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster PortalBackKeywords
Full Text:
DOWNLOAD [PDF]References
Abbaszadeh, P., Gavahi, K., Alipour, A., Deb, P., & Moradkhani, H. (2022). Bayesian Multi-modeling of Deep Neural Nets for Probabilistic Crop Yield Prediction. Agricultural and Forest Meteorology, 314. https://doi.org/10.1016/j.agrformet.2021.108773
Adedipe, T., Shafiee, M., & Zio, E. (2020). Bayesian Network Modelling for the Wind Energy Industry: An Overview. Reliability Engineering and System Safety, 202. https://doi.org/10.1016/j.ress.2020.107053
Aflahah, E., Hidayat, R., & Alfahmi, F. (2019). Pendugaan hotspot sebagai indikator kebakaran hutan di Kalimantan berdasarkan faktor iklim. Pendugaan Hotspot Sebagai Indikator Kebakaran Hutan Di Kalimantan Berdasarkan Faktor Iklim, 9(2), 405–418. https://doi.org/10.29244/jpsl.9.2.405-418
Agustin, A. D., & Adi, T. J. W. (2021). Prediction Models of Infrastructure Resilience as a Decision Support System Based on Bayesian Network. IOP Conference Series: Earth and Environmental Science, 832(1). https://doi.org/10.1088/1755-1315/832/1/012014
Al-Emran, M., Mezhuyev, V., Kamaludin, A., & Shaalan, K. (2018). The impact of knowledge management processes on information systems: A systematic review. International Journal of Management, 43, 173–187.
Albuquerque, V., Dias, M. S., & Bacao, F. (2021). Machine learning approaches to bike-sharing systems: A systematic literature review. ISPRS International Journal of Geo-Information, 10(2). https://doi.org/10.3390/ijgi10020062
Alinezhad, A., Gohari, A., Eslamian, S., & Saberi, Z. (2021). A probabilistic Bayesian framework to deal with the uncertainty in hydro-climate projection of Zayandeh-Rud River Basin. Theoretical and Applied Climatology, 144(3–4), 847–860. https://doi.org/10.1007/s00704-021-03575-3
Basuki, M., Manfaat, D., Nugroho, S., & Dinariyana, A. A. B. (2014). Probabilistic risk assessment of the shipyard industry using the bayesian method. International Journal of Technology, 5(1), 88–97. https://doi.org/10.14716/ijtech.v5i1.157
Bazionis, I. K., & Georgilakis, P. S. (2021). Review of Deterministic and Probabilistic Wind Power Forecasting: Models, Methods, and Future Research. Electricity, 2(1), 13–47. https://doi.org/10.3390/electricity2010002
Candra, A., Thamrin, & Mubarak. (2017). Analisis Pengaruh Faktor Iklim Dan Kebakaran Hutan/Lahan Terhadap Konsentrasi Pm10 Di Kota Pekanbaru Selama Kurun Waktu Tahun 2011-2015. Ilmu Lingkungan, 11(2), 209–227. https://doi.org/10.31258/jil.11.2.p.209-227
Cooper, N. J., Sutton, A. J., Abrams, K. R., Turner, D., & Wailoo, A. (2004). Comprehensive decision analytical modelling in economic evaluation: A Bayesian approach. Health Economics, 13(3), 203–226. https://doi.org/10.1002/hec.804
Cowles, M. K. (2003). Bayesian Statistical Modelling. Journal of the American Statistical Association, 98(461), 256–257. https://doi.org/10.1198/jasa.2003.s262
Danelljan, M., Van Gool, L., & Timofte, R. (2020). Probabilistic regression for visual tracking. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 7181–7190. https://doi.org/10.1109/CVPR42600.2020.00721
Efron, B. (2013). Bayes’ theorem in the 21st century. Science, 340(6137), 1177–1178. https://doi.org/10.1126/science.1236536
Endrawati, E. (2018). Identifikasi Areal Bekas Kebakaran Hutan Dan Lahan Menggunakan Analisis Semi Otomatis Citra Satelit Landsat. Seminar Nasional Geomatika, 2, 273. https://doi.org/10.24895/sng.2017.2-0.420
Fan, Y., Olson, R., & Evans, J. P. (2017). A Bayesian posterior predictive framework for weighting ensemble regional climate models. Geoscientific Model Development, 10(6), 2321–2332. https://doi.org/10.5194/gmd-10-2321-2017
Fanin, T., & Van Der Werf, G. R. (2017). Precipitation-fire linkages in Indonesia (1997-2015). Biogeosciences, 14(18), 3995–4008. https://doi.org/10.5194/bg-14-3995-2017
Foster, D., Comeau, D., & Urban, N. M. (2020). A Bayesian Approach to Regional Decadal Predictability: Sparse Parameter Estimation in High-Dimensional Linear Inverse Models of High-Latitude Sea Surface Temperature Variability. Journal of Climate, 33(14), 6065–6081. https://doi.org/10.1175/JCLI-D-19-0769.1
Gaskins, J. T., Fuentes, C., & De La Cruz, R. (2021). A Bayesian nonparametric model for classification of longitudinal profiles. Biostatistics. https://doi.org/10.1093/biostatistics/kxab026
Ghosh, S., Pandita, P., Atkinson, S., Subber, W., Zhang, Y., Kumar, N. C., Chakrabarti, S., & Wang, L. (2020). Advances in Bayesian Probabilistic Modeling for Industrial Applications. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 6(3). https://doi.org/10.1115/1.4046747
Gilboa, I., Postlewaite, A. W., & Schmeidler, D. (2008). Probability and uncertainty in economic modeling. Journal of Economic Perspectives, 22(3), 173–188. https://doi.org/10.1257/jep.22.3.173
Haq, M. A. (2022). CDLSTM: A novel model for climate change forecasting. Computers, Materials and Continua, 71(2), 2363–2381. https://doi.org/10.32604/cmc.2022.023059
Ji, L., Zhi, X., Zhu, S., & Fraedrich, K. (2019). Probabilistic precipitation forecasting over East Asia using Bayesian model averaging. Weather and Forecasting, 34(2), 377–392. https://doi.org/10.1175/WAF-D-18-0093.1
Kapsch, M. L., Kunz, M., Vitolo, R., & Economou, T. (2012). Long-term trends of hail-related weather types in an ensemble of regional climate models using a Bayesian approach. Journal of Geophysical Research Atmospheres, 117(15). https://doi.org/10.1029/2011JD017185
Kim, Y., Kim, W., Ohn, I., & Kim, Y. O. (2017). Leave-one-out Bayesian model averaging for probabilistic ensemble forecasting. Communications for Statistical Applications and Methods, 24(1), 67–80. https://doi.org/10.5351/CSAM.2017.24.1.067
Lekar, S., Shumeiko, D., Lagodiienko, V., & Valerii, N. (2019). CONSTRUCTION OF BAYESIAN NETWORKS IN PUBLIC ADMINISTRATION OF THE ECONOMY. International Journal of Civil Engineering and Technology (IJCIET), 10(04), 1379–1384.
Li, Y., Wu, Z., He, H., & Yin, H. (2022). Probabilistic subseasonal precipitation forecasts using preceding atmospheric intraseasonal signals in a Bayesian perspective. Hydrology and Earth System Sciences, 26(19), 4975–4994. https://doi.org/10.5194/hess-26-4975-2022
Li, Z., Peck, K. K., Brennan, N. P., Jenabi, M., Hsu, M., Zhang, Z., Holodny, A. I., & Young, R. J. (2013). Diffusion tensor tractography of the arcuate fasciculus in patients with brain tumors: Comparison between deterministic and probabilistic models. Journal of Biomedical Science and Engineering, 06(02), 192–200. https://doi.org/10.4236/jbise.2013.62023
Liang, Z., Wang, D., Guo, Y., Zhang, Y., & Dai, R. (2013). Application of Bayesian Model Averaging Approach to Multimodel Ensemble Hydrologic Forecasting. Journal of Hydrologic Engineering, 18(11), 1426–1436. https://doi.org/10.1061/(asce)he.1943-5584.0000493
Marin, J. M., Mengersen, K., & Robert, C. P. (2005). Bayesian Modelling and Inference on Mixtures of Distributions. Handbook of Statistics, 25, 459–507. https://doi.org/10.1016/S0169-7161(05)25016-2
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Journal of Clinical Epidemiology, 62(10), 1006–1012. https://doi.org/10.1016/j.jclinepi.2009.06.005
Najib, M. K., Nurdiati, S., & Sopaheluwakan, A. (2022). Copula-based joint distribution analysis of the ENSO effect on the drought indicators over Borneo fire-prone areas. Modeling Earth Systems and Environment, 8, 2817–2826. https://doi.org/10.1007/s40808-021-01267-5
Natalia, C., Surbakti, I. P., & Oktavia, C. W. (2020). Integrated ANP and TOPSIS Method for Supplier Performance Assessment. Jurnal Teknik Industri, 21(1), 34–45. https://doi.org/10.22219/jtiumm.vol21.no1.34-45
Nguyen-Le, D. H., Tao, Q. B., Nguyen, V. H., Abdel-Wahab, M., & Nguyen-Xuan, H. (2020). A data-driven approach based on long short-term memory and hidden Markov model for crack propagation prediction. Engineering Fracture Mechanics, 235. https://doi.org/10.1016/j.engfracmech.2020.107085
Nurdiati, S., Bukhari, F., Julianto, M. T., Najib, M. K., & Nazria, N. (2021). Heterogeneous Correlation Map Between Estimated ENSO And IOD From ERA5 And Hotspot In Indonesia. Jambura Geoscience Review, 3(2), 65–72. https://doi.org/10.34312/jgeosrev.v3i2.10443
Nurdiati, S., Sopaheluwakan, A., Julianto, M. T., Septiawan, P., & Rohimahastuti, F. (2021). Modelling and analysis impact of El Nino and IOD to land and forest fire using polynomial and generalized logistic function: cases study in South Sumatra and Kalimantan, Indonesia. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-021-01303-4
Olson, R., Fan, Y., & Evans, J. P. (2016). A simple method for Bayesian model averaging of regional climate model projections: Application to southeast Australian temperatures. Geophysical Research Letters, 43(14), 7661–7669. https://doi.org/10.1002/2016GL069704
Patrick, B. (2012). Probability and measure. In From Measures to Itô Integrals (Anniversar). Wiley.
Pendharkar, P. C., Subramanian, G. H., & Rodger, J. A. (2005). A probabilistic model for predicting software development effort. IEEE Transactions on Software Engineering, 31(7), 615–624. https://doi.org/10.1109/TSE.2005.75
Petticrew, M., & Roberts, H. (2008). Systematic Reviews in the Social Sciences: A Practical Guide. In Systematic Reviews in the Social Sciences: A Practical Guide. https://doi.org/10.1002/9780470754887
Pickering, C., & Byrne, J. (2014). The benefits of publishing systematic quantitative literature reviews for PhD candidates and other early-career researchers. Higher Education Research and Development, 33(3), 534–548. https://doi.org/10.1080/07294360.2013.841651
Ribeiro, L. M., Viegas, D. X., Almeida, M., McGee, T. K., Pereira, M. G., Parente, J., Xanthopoulos, G., Leone, V., Delogu, G. M., & Hardin, H. (2019). Extreme wildfires and disasters around the world: Lessons to be learned. Extreme Wildfire Events and Disasters: Root Causes and New Management Strategies, 31–51. https://doi.org/10.1016/B978-0-12-815721-3.00002-3
Röpnack, A., Hense, A., Gebhardt, C., & Majewski, D. (2013). Bayesian model verification of NWP ensemble forecasts. Monthly Weather Review, 141(1), 375–387. https://doi.org/10.1175/MWR-D-11-00350.1
Samsuri, Anita Zaitunah, O. R. (2021). Analisis Kebutuhan Ruang Terbuka Hijau: Pendekatan Kebutuhan Oksigen. Jurnal Silva Tropika, 5(1), 305–320.
Santriwati, S., Halide, H., & Hasanuddin, H. (2021). Faktor Osean – Atmosfer untuk Memprediksi Titik Panas (Hostspot) di Wilayah Asia Tenggara Bagian Selatan. Jurnal Geocelebes, 5(2), 116–130. https://doi.org/10.20956/geocelebes.v5i2.13454
Sharifahmadian, E., & Latifi, S. (2013). Water environment risk prediction using Bayesian network. Conference Proceedings - IEEE SOUTHEASTCON. https://doi.org/10.1109/SECON.2013.6567437
Siegert, S., Stephenson, D. B., Sansom, P. G., Scaife, A. A., Eade, R., & Arribas, A. (2016). A Bayesian framework for verification and recalibration of ensemble forecasts: How uncertain is NAO predictability? Journal of Climate, 29(3), 995–1012. https://doi.org/10.1175/JCLI-D-15-0196.1
Suhermat, M., Dimyati, M., Supriatna, S., & Martono, M. (2021). Impact of Climate Change on Sea Surface Temperature and Chlorophyll-a Concentration in South Sukabumi Waters. Jurnal Ilmu Lingkungan, 19(2), 393–398. https://doi.org/10.14710/jil.19.2.393-398
Wahyuni, H., & Suranto, S. (2021). Dampak Deforestasi Hutan Skala Besar terhadap Pemanasan Global di Indonesia. JIIP: Jurnal Ilmiah Ilmu Pemerintahan, 6(1), 148–162. https://doi.org/10.14710/jiip.v6i1.10083
Wang, X., Bradlow, E. T., & Wainer, H. (2002). a General Bayesian Model for Testlets: Theory and Applications. In ETS Research Report Series (Vol. 2002, Issue 1). https://doi.org/10.1002/j.2333-8504.2002.tb01869.x
Xiao, Y., & Watson, M. (2019). Guidance on Conducting a Systematic Literature Review. Journal of Planning Education and Research, 39(1), 93–112. https://doi.org/10.1177/0739456X17723971
Xie, L. (2022). The analysis and forecasting COVID-19 cases in the United States using Bayesian structural time series models. Biostatistics and Epidemiology, 6(1), 1–15. https://doi.org/10.1080/24709360.2021.1948380
Zhang, Y. M., Wang, H., Bai, Y., Mao, J. X., & Xu, Y. C. (2022). Bayesian dynamic regression for reconstructing missing data in structural health monitoring. Structural Health Monitoring, 21(5), 2097–2115. https://doi.org/10.1177/14759217211053779
DOI: https://doi.org/10.31764/jtam.v7i3.13651
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Evi Ardiyani, Sri Nurdiati, Ardhasena Sopaheluwakan, Mohamad Khoirun Najib, Fadillah Rohimahastuti
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: