Solution Formula of Korteweg Type by Using Partial Fourier Transform Methods in Half-Space without Surface Tension
Abstract
Sharp-interface models and diffuse-interface models are the two basic types of models that describe liquid-vapour flow for compressible fluids. Their depictions of the line dividing liquid from vapour are different. The interface is modeled as a hypersurface in sharp-interface models. Sharp-interface models are free-boundary problems from a mathematical perspective since the position of the interface is a priori unknown and therefore a component of the solution to the free-boundary problem. A unique system of partial differential equations describes the motion of the fluid in the liquid and vapour phases, respectively. At the interface, boundary conditions between these systems are connected.. A mathematical model for liquid-vapour flows including phase transition known as the Navier-Stokes-Korteweg system which is the extension of the compressible Navier-Stokes equations. The purpose of Ihis article, we consider the soluton formula of Korteweg fluid model in half-space without surface tension. Since we consider in half-space case, Partial Fourier transform become appropriate method to find the formula of velocity and density for Korteweg type. The solution formula of the model problem for the velocity (u) and the (φ) are obtained by using the invers of partial Fourier transform. It consist multipliers. For the future research, we can investigate the estimation of the multiplier. Furthermore, by using Weis’s multiplier theorem we can find not only maximal Lp-Lq regularity class, but also we can consider the local well-posedness of the model problem.
Keywords
Full Text:
DOWNLOAD [PDF]References
Adams, R. A., & Fournier, J. J. F. (2003). Sobolev spaces. Elsevier.
Alif, A. H., Maryani, S., & Nurshiami, S. R. (2021). Solution Formula of the Compressible Fluid Motion in Three Dimension Euclidean Space using Fourier Transform. Journal of Physics: Conference Series, 1751(1), 12006. DOI 10.1088/1742-6596/1751/1/012006
Benzoni-Gavage, S., Mazet, L., Descombes, S., & Jamet, D. (2005). Structure of Korteweg models and stability of diffuse interfaces. Interfaces and Free Boundaries, 7(4), 371–414.
Bhatnagar, R., & Finn, R. (2016). On the capillarity equation in two dimensions. Journal of Mathematical Fluid Mechanics, 18, 731–738. DOI 10.4171/IFB/130
Bresch, D., Desjardins, B., & Lin, C.-K. (2003). On some compressible fluid models: Korteweg, lubrication, and shallow water systems. https://doi.org/10/1081/PDE-120020499
Bresch, D., Gisclon, M., & Lacroix-Violet, I. (2019). On Navier–Stokes–Korteweg and Euler–Korteweg systems: application to quantum fluids models. Archive for Rational Mechanics and Analysis, 233, 975–1025. https://doi.org/10.1007/s00205-019-01373-w
Chen, Z., Chai, X., Dong, B., & Zhao, H. (2015). Global classical solutions to the one-dimensional compressible fluid models of Korteweg type with large initial data. Journal of Differential Equations, 259(8), 4376–4411. https://doi.org/10.1016/j.jde.2015.05.023
Chen, Z., & Li, Y. (2021). Asymptotic behavior of solutions to an impermeable wall problem of the compressible fluid models of Korteweg type with density-dependent viscosity and capillarity. SIAM Journal on Mathematical Analysis, 53(2), 1434–1473. https://doi.org/10.1137/20M1340319
Daube, J. (2016). Sharp-Interface Limit for the Navier-Stokes-Korteweg Equations. Universität.
Dunn, J. E., & Serrin, J. (1985). On the thermomechanics of interstitial working. Archive for Rational Mechanics and Analysis, 88(2), 95–133. https://doi.org/10.1007/BF00250907
Emmer, M. (1987). Robert Finn, equilibrium capillary surfaces.
Finn, R. (2012). Equilibrium capillary surfaces (Vol. 284). Springer Science & Business Media.
Freistühler, H., & Kotschote, M. (2017). Phase-field and Korteweg-type models for the time-dependent flow of compressible two-phase fluids. Archive for Rational Mechanics and Analysis, 224, 1–20. https://doi.org/10.1007/s00205-016-1065-0
Haspot, B. (2011). Existence of global weak solution for compressible fluid models of Korteweg type. Journal of Mathematical Fluid Mechanics, 13, 223–249. https://doi.org/10.1007/s00021-009-0013-2
Inna, S., Maryani, S., & Saito, H. (2020). Half-space model problem for a compressible fluid model of Korteweg type with slip boundary condition. Journal of Physics: Conference Series, 1494(1), 12014. DOI 10.1088/1742-6596/1494/1/012014
Kobayashi, T., Murata, M., & Saito, H. (2022). Resolvent Estimates for a Compressible Fluid Model of Korteweg Type and Their Application. Journal of Mathematical Fluid Mechanics, 24(1), 1–42. https://doi.org/10.1007/s00021-021-00646-3
Kolahdouz, E. M., Bhalla, A. P. S., Scotten, L. N., Craven, B. A., & Griffith, B. E. (2021). A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction. Journal of Computational Physics, 443, 110442. https://doi.org/10.1016/j.jcp.2021.110442
Korteweg, D. J., & De Vries, G. (1895). XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39(240), 422–443. https://doi.org/10.1080/14786449508620739
Kotschote, M. (2010). Strong well-posedness for a Korteweg-type model for the dynamics of a compressible non-isothermal fluid. Journal of Mathematical Fluid Mechanics, 12, 473–484. https://doi.org/10.1007/s00021-009-0298-1
Kotschote, M. (2014). Existence and time-asymptotics of global strong solutions to dynamic Korteweg models. Indiana University Mathematics Journal, 21–51. https://www.jstor.org/stable/24904209
Kotschote, M. (2008). Strong solutions for a compressible fluid model of Korteweg type. Annales de l’IHP Analyse Non Linéaire, 25(4), 679–696. doi:10.1016/j.anihpc.2007.03.005
Langer, J. S. (2000). Theory of the condensation point. Annals of Physics, 281(1–2), 941–990. https://doi.org/10.1006/aphy.2000.6025
Lauro, G. (2014). Linear Stability Analysis for a Korteweg Fluid. Acta Applicandae Mathematicae, 132, 405–410. https://doi.org/10.1007/s10440-014-9911-2
Li, Y., Luo, H., Li, H., Liu, X., Tan, Y., Chen, S., & Cai, J. (2020). A brief review of dynamic capillarity effect and its characteristics in low permeability and tight reservoirs. Journal of Petroleum Science and Engineering, 189, 106959. https://doi.org/10.1016/j.petrol.2020.106959
Magnaudet, J., & Mercier, M. J. (2020). Particles, drops, and bubbles moving across sharp interfaces and stratified layers. Annual Review of Fluid Mechanics, 52, 61–91. https://doi.org/10.1146/annurev-fluid-010719-060139
Maryani, S. (2016a). Global well‐posedness for free boundary problem of the Oldroyd‐B model fluid flow. Mathematical Methods in the Applied Sciences, 39(9), 2202–2219. https://doi.org/10.1002/mma.3634
Maryani, S. (2016b). On the free boundary problem for the Oldroyd-B Model in the maximal Lp–Lq regularity class. Nonlinear Analysis: Theory, Methods & Applications, 141, 109–129. https://doi.org/10.1016/j.na.2016.03.024
Saito, H. (2020). On the maximal Lp-Lq regularity for a compressible fluid model of Korteweg type on general domains. Journal of Differential Equations, 268(6), 2802–2851. https://doi.org/10.1016/j.jde.2019.09.040
Saito, H. (2021). Existence of R‐bounded solution operator families for a compressible fluid model of Korteweg type on the half‐space. Mathematical Methods in the Applied Sciences, 44(2), 1744–1787. https://doi.org/10.1002/mma.6875
Shine, K. P., Ptashnik, I. V, & Rädel, G. (2012). The water vapour continuum: brief history and recent developments. Surveys in Geophysics, 33, 535–555. https://doi.org/10.1007/s10712-011-9170-y
Siddique, J. I., Anderson, D. M., & Bondarev, A. (2009). Capillary rise of a liquid into a deformable porous material. Physics of Fluids, 21(1), 13106. https://doi.org/10.1063/1.3068194
Souček, O., Heida, M., & Málek, J. (2020). On a thermodynamic framework for developing boundary conditions for Korteweg-type fluids. International Journal of Engineering Science, 154, 103316. https://doi.org/10.1016/j.ijengsci.2020.103316
Suzuki, Y. (2020). A GENERIC formalism for Korteweg-type fluids: II. Higher-order models and relation to microforces. Fluid Dynamics Research, 52(2), 25510. DOI 10.1088/1873-7005/ab7ff6
Volkov, R. S., Kuznetsov, G. V, & Strizhak, P. A. (2015). Water droplet deformation in gas stream: Impact of temperature difference between liquid and gas. International Journal of Heat and Mass Transfer, 85, 1–11. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.078
DOI: https://doi.org/10.31764/jtam.v7i3.14721
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Yiyi Fikri Nurizki, Sri Maryani, Bambang Hendriya Guswanto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: