Geographically Weighted Panel Regression Modelling of Dengue Hemorrhagic Fever Data Using Exponential Kernel Function
Abstract
Geographically Weighted Panel Regression (GWPR) model is a panel regression
model applied to spatial data. This research takes the Fixed Effect Model (FEM)
panel regression as the global model and GWPR as the local model for dengue
hemorrhagic fever (DHF) in East Kalimantan Province data over the years 2018-
2020. DHF is a disease that has the potential to become an extraordinary event
which is accompanied by death. In comparison to Indonesia, East Kalimantan
Province's DHF Incident Rate (IR) was high in 2020. East Kalimantan's IR is 60.6
per 100,000 population, compared to Indonesia's IR of 40.0 per 100,000
population. This research aims to obtain the GWPR model, as well as to acquire
factors that affect DHF in East Kalimantan Province over the years 2018-2020
based GWPR model. The parameter of the GWPR model was estimated on each
observation location using the Weighted Least Square (WLS) method, which is an
Ordinary Least Square (OLS) with the addition of spatial weighting. The spatial
weighting on the GWPR model was determined by the best weighting function
between fixed exponential and adaptive exponential. The optimum weighting
function with a minimum cross-validation (CV) value of 1.7317×106 is adaptive
exponential. Based on GWPR parameter testing, factors that affect DHF are local
and diverse in each 10 regencies/municipalities in East Kalimantan Province.
These factors are population density, number of health facilities, percentage of
proper sanitation use in the household, percentage of household with qualified
drinking water sources, and percentage of health services. The coefficient of
determination of the GWPR model obtains a higher value than the FEM, which is
95.33%. Based on the measurement of goodness using the coefficient of
determination value, it can be concluded that GWPR is the best method to model
the DHF data rather than the FEM.
Keywords
Full Text:
DOWNLOAD [PDF]References
Alita, D., Putra, A. D., & Darwis, D. (2021). Analysis of Classic Assumption Test and Multiple Linear Regression Coefficient Test for Employee Structural Office Recommendation. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 15(3), 295–306. https://doi.org/10.22146/ijccs.65586
BPS. (2020). Provinsi Kalimantan Timur Dalam Angka 2020. BPS Provinsi Kalimantan Timur. https://kaltim.bps.go.id/
Bruna, F., & Yu, D. (2013). Geographically Weighted Panel Regression. In XI Congreso Galego de Estatística e Investigación de Operacións. http://Xisgapeio. Udc. Es., 1–23.
Cai, R., Yu, D., & Oppenheimer, M. (2014). Estimating the Spatially Varying Responses of Corn Yields to Weather Variations using Geographically Weighted Panel Regression. Journal of Agricultural and Resource Economics, 39(2), 230–252. http://www.jstor.org/stable/44131327
Chotimah, C., Sutikno, & Setiawan. (2019). Modelling of Income Inequality in East Java Using Geographically Weighted Panel Regression. IOP Conference Series: Materials Science and Engineering, 546(5), 0–10. https://doi.org/10.1088/1757-899X/546/5/052019
Dinas Kesehatan. (2020). Profil Kesehatan Provinsi Kalimantan Timur 2020. Dinas Kesehatan Provinsi Kalimantan Timur. https://dinkes.kaltimprov.go.id/
Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2003). Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. John Wiley & Sons.
Musella, G., & Rivieccio, G. (2022). Evaluating the Determinants of Innovation from a Spatio-Temporal Perspective. The GWPR approach. Scientific Meeting of the Italian Statistical Society, 354–365. https://hdl.handle.net/11573/1680228.
Gujarati, D. N. (2022). Basic Econometric Fifth Edition. McGraw-Hill.
Hsiao, C. (2007). Panel Data Analysis—Advantages and Challenges. TEST, 16(1), 1–22. https://doi.org/10.1007/s11749-007-0046-x
Jones, K. W., & Lewis, D. J. (2015). Estimating the Counterfactual Impact of Conservation Programs on Land Cover Outcomes: The Role of Matching and Panel Regression Techniques. PLoS ONE, 10(10), 1–22. https://doi.org/10.1371/journal.pone.0141380
Leung, Y., Mei, C. L., & Zhang, W. X. (2000). Statistical Tests for Spatial Nonstationarity Based on The Geographically Weighted Regression Model. Environment and Planning A, 32(1), 9–32. https://doi.org/10.1068/a3162
Lin, X., Su, Y. C., Shang, J., Sha, J., Li, X., Sun, Y. Y., Ji, J., & Jin, B. (2019). Geographically Weighted Regression Effects on Soil Zinc Content Hyperspectral Modeling by Applying The Fractional-Order Differential. Remote Sensing, 11(6). https://doi.org/10.3390/RS11060636
Mar'ah, Z., Sifriyani. (2023). (GWPR) For Covid-19 Case In Indonesia. Barekeng, 17(2), 879–886. https://doi.org/10.30598/barekengvol17iss2pp0879-0886.
Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to Linear Regression Analysis. John Wiley & Sons.
Moon, H. R., & Weidner, M. (2017). Dynamic Linear Panel Regression Models with Interactive Fixed Effects. Econometric Theory, 33(1), 158–195. https://doi.org/10.1017/S0266466615000328.
Murakami, D., & Lu, B. (2021). Stable Geographically Weighted Poisson Regression for Count Data. UC Santa Barbara. https://doi.org/10.25436/E2X59B
Ningrum, A. S., Rusgiyono, A., & Prahutama, A. (2020). Village Classification Index Prediction Using Geographically Weighted Panel Regression. Journal of Physics: Conference Series, 1524(1), 0–8. https://doi.org/10.1088/1742-6596/1524/1/012040
Obabire, A., Agboola, J. O., Ajao Isaac, O., & Adegbilero-Iwari, O. E. (2020). Comparison of Different Tests for Detecting Heteroscedasticity in Datasets. Annals. Computer Science Series, 18(2), 78–85.
Piepho, H. (2019). A Coefficient of Determination (R2) for Generalized Linear Mixed Models. Biometrical Journal, 61(4), 860–872. https://doi.org/10.1002/bimj.201800270.
Setiawan, K., & Kusrini, E. (2010). Ekonometrika. Yogyakarta: Andi Offset.
Shrestha, N. (2020). Detecting Multicollinearity in Regression Analysis. American Journal of Applied Mathematics and Statistics, 8(2), 39–42. https://doi.org/10.12691/ajams-8-2-1.
Sifriyani, S., Mandang I., Amijaya, F. D. T., & Ruslan, R. (2022) Developing Geographically Weighted Panel Regression Model For Spatio-Temporal Analysis Of Covid-19 Positive Cases In Kalimantan, Indonesia. Journal of Southwest Jiaotong University, 57(3). https://doi.org/10.35741/issn.0258-2724.57.3.10.
Sifriyani, S., Mandang, I., & Amijaya, F. D. T. (2022). Geographically Temporally Weighted Regression Model for GIS Mapping of Influence COVID-19 in East Kalimantan. AIP Conference Proceedings, 2668(1). AIP Publishing. https://doi.org/10.1063/5.0111808.
Sifriyani, Mandang, I., Deny, F., Amijaya, T., Sholihin, M., Tri, A., & Dani, R. (2022). A Spatio-Temporal Description of Covid-19 Cases in East Borneo Using Improved Geographically and Temporally Weighted Regression (I-GTWR). Commun. in Mathematical Biology and Neuroscience, 1–22. https://doi.org/10.28919/cmbn/7572.
Sifriyani, S., Rasjid, M., Rosadi, D., Anwar, S., Wahyuni, R. D., & Jalaluddin, S. (2022). Spatial-Temporal Epidemiology of COVID-19 Using a Geographically and Temporally Weighted Regression Model. Symmetry, 14(4). https://doi.org/10.3390/sym14040742.
Wooldridge, J. M. (2002). Econometric Analysis of Cross Section and Panel Data. Cambridge: MIT Press
Yusra, I., Hadya, R., Begawati, N., Istiqomah, L., & Kurniasih, N. (2019). Panel Data Model Estimation: The Effect of Managerial Ownership, Capital Structure, and Company Size on Corporate Value. Journal of Physics: Conference Series, 1175(1), 12285. https://doi.org/10.1088/1742-6596/1175/1/012285.
DOI: https://doi.org/10.31764/jtam.v7i4.16235
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Risti Raihani, Sifriyani, Surya Prangga
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: