Numerical Solution of the Advection-Diffusion Equation Using the Radial Basis Function
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Aliy, K., Shiferaw, A., & Muleta, H. (2021). Radial basis functions based differential quadrature method for one dimensional heat equation. American Journal of Mathematical and Computer Modelling, 6(2), 35. https://doi.org/10.11648/j.ajmcm.20210602.12
Appadu, A. R. (2013). Numerical solution of the 1D advection-diffusion equation using standard and nonstandard finite difference schemes. Journal of Applied Mathematics, 2013, 1–14. https://doi.org/10.1155/2013/734374
Ara, K. N. I., Rahaman, M. M., & Alam, M. S. (2021). Numerical solution of advection diffusion equation using semi-discretization scheme. Applied Mathematics, 12(12), 1236–1247. https://doi.org/10.4236/am.2021.1212079
Bahar, E., O. Korkut, S., Cicek, Y., & Gurarslan, G. (2018). A Numerical solution for advection-diffusion equation based on a semi-lagrangian scheme. J. BAUN Inst. Sci. Technol, 20(3), 36–52. https://doi.org/10.25092/baunfbed.476583
Bhatia, G. S., & Arora, G. (2016). Radial basis function methods for solving partial differential equations-a review. Indian Journal of Science and Technology, 9(45). https://doi.org/10.17485/ijst/2016/v9i45/105079
Chenoweth, M. (2009). A Numerical study of generalized multiquadric radial basis function interpolation. SIAM Undergraduate Research Online, 2(2), 58–70. https://doi.org/10.1137/09s01040x
Firouzdor, R., Sadat Asari, S., & Amirfakhrian, M. (2016). Application of radial basis function to approximate functional integral equations. Journal of Interpolation and Approximation in Scientific Computing, 2016(2), 77–86. https://doi.org/10.5899/2016/jiasc-00089
Gharehbaghi, A., Kaya, B., & Tayfur, G. (2017). Comparative analysis of numerical solutions of advection-diffusion equation. Cumhuriyet Science Journal, 38(1), 49. https://doi.org/10.17776/csj.53808
Golbabai, A., Nikan, O., & Ramezani Tousi, J. (2016). Note on using radial basis functions method for solving nonlinear integral equations. Communications in Numerical Analysis, 2016(2), 81–91. https://doi.org/10.5899/2016/cna-00257
Larsson, E., & Fornberg, B. (2003). A Numerical study of some radial basis function based solution methods for elliptic PDEs. Computers & Mathematics with Applications, 46(5–6), 891–90.
Leveque, R. J. (2022). Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.
Li Jianyu, Luo Siwei, Qi Yingjian, & Huang Yaping. (2012). Numerical solution of differential equations by radial basis function neural networks. Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN’02 (Cat. No.02CH37290), 1, 773–777. https://doi.org/10.1109/IJCNN.2002.1005571
Luga, T., Aboiyar, T., & Adee, S. O. (2019). Radial basis function methods for approximating the two dimensional heat equation. International Journal of Engineering Applied Sciences and Technology, 4(2), 7–15. http://www.ijeast.com
Mai-Duy, N., & Tran-Cong, T. (2003). Approximation of function and its derivatives using radial basis function networks. Elsevier Science Inc: Applied Mathematical Modelling, 27, 197–220. www.elsevier.com/locate/apm
Mojtabi, A., & Deville, M. O. (2015). One dimensional linear advection diffusion equation: analytical and finite element solutions. Computers & Fluids, 107, 189–195. https://doi.org/10.1016/j.compfluid.2014.11.006
Nazir, T., Abbas, M., Ismail, A. I. M., Majid, A. A., & Rashid, A. (2016). The numerical solution of advection-diffusion problems using new cubic trigonometric b-splines approach. Applied Mathematical Modelling, 40(7–8), 4586–4611. https://doi.org/10.1016/j.apm.2015.11.041
Sanjaya, F., & Mungkasi, S. (2017). A Simple but accurate explicit finite difference method for the advection-diffusion equation. Journal of Physics: Conference Series, 909(1), 1–5. https://doi.org/10.1088/1742-6596/909/1/012038
Sarboland, M., & Aminataei, A. (2015). Numerical solution of the nonlinear klein-gordon equation using multiquadric quasi-interpolation scheme. Universal Journal of Applied Mathematics, 3(3), 40–49. https://doi.org/10.13189/ujam.2015.030302
Sharma, D., Jiwari, R., & Kumar, S. (2011). Galerkin-Finite element method for the numerical solution of advection-diffusion equation. International Journal of Pure and Applied Mathematics, 70(3), 389–399. https://www.researchgate.net/publication/224842347
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104(August), 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
Sugiyono. (2015). Metode Penelitian Pendidikan. Alfabeta.
Sulpiani, R., & Widowati. (2013). Solusi numerik persamaan difusi menggunakan metode beda hingga. Jurnal Sains Dan Matematika, 21(3), 68–74.
Syafi’i, M. (2013). Model penyebaran nitrogen dioksida (NO2) akibat proses industri. Industri Inovatif, 3(1), 24–34.
Wang, F., Zheng, K., Ahmad, I., & Ahmad, H. (2021). Gaussian radial basis functions method for linear and nonlinear convection-diffusion models in physical phenomena. Open Physics, 19(1), 69–76. https://doi.org/10.1515/phys-2021-0011
Zakharov, A. V., Peach, M. L., Sitzmann, M., & Nicklaus, M. C. (2014). A New Approach to radial basis function approximation and its application to QSAR. Journal of Chemical Information and Modeling, 54(3), 713–719. https://doi.org/10.1021/ci400704f
DOI: https://doi.org/10.31764/jtam.v7i4.16239
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 La Ode Sabran, Mohamad Syafi’i
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: