Numerical Solution of the Advection-Diffusion Equation Using the Radial Basis Function

La Ode Sabran, Mohamad Syafi'i

Abstract


The advection-diffusion equation is a form of partial differential equation. This equation is also known as the transport equation. The purpose of this research is to approximatio the solution of advection-diffusion equation  by numerical approach using radial basis functions network. The approximation is performed by using the multiquadrics basis function. The simulation of the numerical solution is run with the help of the Matlab program. The one-dimensional advection-diffusion equation used is  ∂u/∂t+C ∂u/∂x=D (∂^2 u)/(∂x^2 )  with given initial conditions, boundary conditions, and exact solution u(x,t). The numerical solution approximation using the radial basis function network with dt=0.004 and dx=0.02 produces the value at each discretization point is close to the exact solution. In this study, the smallest error between numerical solution and the exact solution is obtained 2.18339 ×〖10〗^(-10).

Keywords


Advection-diffusion Equation; Numerical Solution; PDE; Radial Basis Function.

Full Text:

DOWNLOAD [PDF]

References


Aliy, K., Shiferaw, A., & Muleta, H. (2021). Radial basis functions based differential quadrature method for one dimensional heat equation. American Journal of Mathematical and Computer Modelling, 6(2), 35. https://doi.org/10.11648/j.ajmcm.20210602.12

Appadu, A. R. (2013). Numerical solution of the 1D advection-diffusion equation using standard and nonstandard finite difference schemes. Journal of Applied Mathematics, 2013, 1–14. https://doi.org/10.1155/2013/734374

Ara, K. N. I., Rahaman, M. M., & Alam, M. S. (2021). Numerical solution of advection diffusion equation using semi-discretization scheme. Applied Mathematics, 12(12), 1236–1247. https://doi.org/10.4236/am.2021.1212079

Bahar, E., O. Korkut, S., Cicek, Y., & Gurarslan, G. (2018). A Numerical solution for advection-diffusion equation based on a semi-lagrangian scheme. J. BAUN Inst. Sci. Technol, 20(3), 36–52. https://doi.org/10.25092/baunfbed.476583

Bhatia, G. S., & Arora, G. (2016). Radial basis function methods for solving partial differential equations-a review. Indian Journal of Science and Technology, 9(45). https://doi.org/10.17485/ijst/2016/v9i45/105079

Chenoweth, M. (2009). A Numerical study of generalized multiquadric radial basis function interpolation. SIAM Undergraduate Research Online, 2(2), 58–70. https://doi.org/10.1137/09s01040x

Firouzdor, R., Sadat Asari, S., & Amirfakhrian, M. (2016). Application of radial basis function to approximate functional integral equations. Journal of Interpolation and Approximation in Scientific Computing, 2016(2), 77–86. https://doi.org/10.5899/2016/jiasc-00089

Gharehbaghi, A., Kaya, B., & Tayfur, G. (2017). Comparative analysis of numerical solutions of advection-diffusion equation. Cumhuriyet Science Journal, 38(1), 49. https://doi.org/10.17776/csj.53808

Golbabai, A., Nikan, O., & Ramezani Tousi, J. (2016). Note on using radial basis functions method for solving nonlinear integral equations. Communications in Numerical Analysis, 2016(2), 81–91. https://doi.org/10.5899/2016/cna-00257

Larsson, E., & Fornberg, B. (2003). A Numerical study of some radial basis function based solution methods for elliptic PDEs. Computers & Mathematics with Applications, 46(5–6), 891–90.

Leveque, R. J. (2022). Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.

Li Jianyu, Luo Siwei, Qi Yingjian, & Huang Yaping. (2012). Numerical solution of differential equations by radial basis function neural networks. Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN’02 (Cat. No.02CH37290), 1, 773–777. https://doi.org/10.1109/IJCNN.2002.1005571

Luga, T., Aboiyar, T., & Adee, S. O. (2019). Radial basis function methods for approximating the two dimensional heat equation. International Journal of Engineering Applied Sciences and Technology, 4(2), 7–15. http://www.ijeast.com

Mai-Duy, N., & Tran-Cong, T. (2003). Approximation of function and its derivatives using radial basis function networks. Elsevier Science Inc: Applied Mathematical Modelling, 27, 197–220. www.elsevier.com/locate/apm

Mojtabi, A., & Deville, M. O. (2015). One dimensional linear advection diffusion equation: analytical and finite element solutions. Computers & Fluids, 107, 189–195. https://doi.org/10.1016/j.compfluid.2014.11.006

Nazir, T., Abbas, M., Ismail, A. I. M., Majid, A. A., & Rashid, A. (2016). The numerical solution of advection-diffusion problems using new cubic trigonometric b-splines approach. Applied Mathematical Modelling, 40(7–8), 4586–4611. https://doi.org/10.1016/j.apm.2015.11.041

Sanjaya, F., & Mungkasi, S. (2017). A Simple but accurate explicit finite difference method for the advection-diffusion equation. Journal of Physics: Conference Series, 909(1), 1–5. https://doi.org/10.1088/1742-6596/909/1/012038

Sarboland, M., & Aminataei, A. (2015). Numerical solution of the nonlinear klein-gordon equation using multiquadric quasi-interpolation scheme. Universal Journal of Applied Mathematics, 3(3), 40–49. https://doi.org/10.13189/ujam.2015.030302

Sharma, D., Jiwari, R., & Kumar, S. (2011). Galerkin-Finite element method for the numerical solution of advection-diffusion equation. International Journal of Pure and Applied Mathematics, 70(3), 389–399. https://www.researchgate.net/publication/224842347

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104(August), 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039

Sugiyono. (2015). Metode Penelitian Pendidikan. Alfabeta.

Sulpiani, R., & Widowati. (2013). Solusi numerik persamaan difusi menggunakan metode beda hingga. Jurnal Sains Dan Matematika, 21(3), 68–74.

Syafi’i, M. (2013). Model penyebaran nitrogen dioksida (NO2) akibat proses industri. Industri Inovatif, 3(1), 24–34.

Wang, F., Zheng, K., Ahmad, I., & Ahmad, H. (2021). Gaussian radial basis functions method for linear and nonlinear convection-diffusion models in physical phenomena. Open Physics, 19(1), 69–76. https://doi.org/10.1515/phys-2021-0011

Zakharov, A. V., Peach, M. L., Sitzmann, M., & Nicklaus, M. C. (2014). A New Approach to radial basis function approximation and its application to QSAR. Journal of Chemical Information and Modeling, 54(3), 713–719. https://doi.org/10.1021/ci400704f




DOI: https://doi.org/10.31764/jtam.v7i4.16239

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 La Ode Sabran, Mohamad Syafi’i

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: