The Impact of Peer Pressure Mathematical Models Armed Criminal Groups with Criminal Mapping Area

Rian Ade Pratama, Maria F V Ruslau

Abstract


Model Armed Criminal Groups is mathematically realistic to be considered in the study of mathematical science. The aim of this research is to form a mathematical model of social cases of criminal acts. The given model is a criminal form that adopts the conformity of the conditions in the susceptible, exposed, infected, and recovered (SEIR) disease distribution model. The research method used is literature study and analysis. The research results show that there are 2 non-negative equilibrium, and one of them is stability analysis. Stability analysis is only carried out at equilibrium that does not contain a zero value with the Routh-Hurwitz criteria. In the results of other research the trajectories show that population growth tends not to experience fluctuations, this indicates that the population is growing towards stability rapidly. In case studies in the field, this marks a cycle of crime that quickly subsides or only occurs in a short period of time and does not occur in a sustainable manner. Overall the susceptible population, the exposed population, the infected population, and the recovered population experience the same conditions.

Keywords


Peer pressure; Criminal groups; SEIR models.

Full Text:

DOWNLOAD [PDF]

References


D’Orsogna, M. R., & Perc, M. (2015). Statistical physics of crime: A review. Physics of Life Reviews, 12, 1–21. https://doi.org/10.1016/j.plrev.2014.11.001

Feltran, G., Lero, C., Cipriani, M., Maldonado, J., Rodrigues, F. de J., Silva, L. E. L., & Farias, N. (2022). Variations in Homicide Rates in Brazil: An Explanation Centred on Criminal Group Conflicts. Dilemas: Revista de Estudos de Conflito e Controle Social, 15(Especial 4), 349–386. https://doi.org/10.4322/dilemas.v15esp4.52509

Ferreira, F., Osowski, G. V, & Amaku, M. (2020). Mathematical Model To Simulate Spatial Spread Of Infectious. Conference on Dynamical Systems Applied to Biology and Natural Sciences DSABNS 2020, February.

Garriga, A. C., & Phillips, B. J. (2022). Organized crime and foreign direct investment: Evidence from criminal groups in Mexico. Journal of Conflict Resolution, June.

J. Kuhn, M. (2022). Mathematical modeling of infectious diseases : An introduction (Issue January).

Monuteaux, M. C., Lee, L. K., Hemenway, D., Mannix, R., & Fleegler, E. W. (2015). Firearm Ownership and Violent Crime in the U.S.: An Ecologic Study. American Journal of Preventive Medicine, 49(2), 207–214. https://doi.org/10.1016/j.amepre.2015.02.008

Moore, M. D., & Bergner, C. M. (2016). The Relationship between Firearm Ownership and Violent Crime. Justice Policy Journal, 13(1), 1–20. http://search.ebscohost.com/login.aspx?direct=true&db=i3h&AN=115923708&site=ehost-live

Nur, W. (2020). Mathematical Model of Armed Criminal Group with Pre-emitive and Repressive Intervention. Journal OfMathematics: Theory and Applications, 2(2), 27–32.

Peter, O. J., Akinduko, O. B., Oguntolu, F. A., & Ishola, C. Y. (2018). Mathematical model for the control of infectious disease. Journal of Applied Sciences and Environmental Management, 22(4), 447. https://doi.org/10.4314/jasem.v22i4.1

Pratama, R. A. (2022). Impact Of Fear Behavior On Prey Population Growth Prey-Predator Interaction. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 16(2), 371–378. https://doi.org/10.30598/barekengvol16iss2pp371-378%0AIMPACT

Pratama, R. A., Fransina, M., Ruslau, V., & Musamus, U. (2022). Application of Beddington DeAngelis Response Function in Ecological Mathematical System : Study Fish Endemic Oliv Predator Species in Merauke. JTAM (Jurnal Teori Dan Aplikasi Matematika), 6(1), 51–60.

Pratama, R. A., Loupatty, M., Hariyanto, H., Caesarendra, W., & Rahmaniar, W. (2023). Fear and Group Defense Effect of a Holling Type IV Predator-Prey System Intraspecific Competition. Emerging Science Journal, 7(2), 385–395. https://doi.org/10.28991/ESJ-2023-07-02-06

Puspitasari, N., Kusumawinahyu, W. M., & Trisilowati, T. (2021). Dynamic Analysis of the Symbiotic Model of Commensalism and Parasitism with Harvesting in Commensal Populations. JTAM (Jurnal Teori Dan Aplikasi Matematika), 5(1), 193. https://doi.org/10.31764/jtam.v5i1.3893

Schmidt, S., Heffernan, R., & Ward, T. (2021). The Cultural Agency-Model of Criminal Behavior. Aggression and Violent Behavior, 58(August). https://doi.org/10.1016/j.avb.2021.101554

Sooknanan, J., Bhatt, B., & Comissiong, D. M. G. (2013). Catching a Gang - A mathematical Model of the Spread of Gangs in a Population Treated as an Infectious Disease. International Journal of Pure and Applied Mathematics, 83(1), 25–43. https://doi.org/10.12732/ijpam.v83i1.4

Vaughn, M. G., & DeLisi, M. (2018). Criminal energetics: A theory of antisocial enhancement and criminal attenuation. Aggression and Violent Behavior, 38, 1–12. https://doi.org/10.1016/j.avb.2017.11.002

Verhulst, F. (2017). Nonlinear Differential Equations and Dynamic Systems (Issue May 2014). https://doi.org/10.1007/978-3-642-61453-8

Zaman, G., Jung, I. H., Torres, D. F. M., & Zeb, A. (2017). Mathematical Modeling and Control of Infectious Diseases. Computational and Mathematical Methods in Medicine, 2017, 7149154. https://doi.org/10.1155/2017/7149154

Zhilla, F., & Lamallari, B. (2015). Albanian Criminal Groups. Trends in Organized Crime, 18(4), 329–347. https://doi.org/10.1007/s12117-015-9253-0




DOI: https://doi.org/10.31764/jtam.v7i4.16255

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Rian Ade Pratama, Maria F V Ruslau

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: