The Impact of Peer Pressure Mathematical Models Armed Criminal Groups with Criminal Mapping Area
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
D’Orsogna, M. R., & Perc, M. (2015). Statistical physics of crime: A review. Physics of Life Reviews, 12, 1–21. https://doi.org/10.1016/j.plrev.2014.11.001
Feltran, G., Lero, C., Cipriani, M., Maldonado, J., Rodrigues, F. de J., Silva, L. E. L., & Farias, N. (2022). Variations in Homicide Rates in Brazil: An Explanation Centred on Criminal Group Conflicts. Dilemas: Revista de Estudos de Conflito e Controle Social, 15(Especial 4), 349–386. https://doi.org/10.4322/dilemas.v15esp4.52509
Ferreira, F., Osowski, G. V, & Amaku, M. (2020). Mathematical Model To Simulate Spatial Spread Of Infectious. Conference on Dynamical Systems Applied to Biology and Natural Sciences DSABNS 2020, February.
Garriga, A. C., & Phillips, B. J. (2022). Organized crime and foreign direct investment: Evidence from criminal groups in Mexico. Journal of Conflict Resolution, June.
J. Kuhn, M. (2022). Mathematical modeling of infectious diseases : An introduction (Issue January).
Monuteaux, M. C., Lee, L. K., Hemenway, D., Mannix, R., & Fleegler, E. W. (2015). Firearm Ownership and Violent Crime in the U.S.: An Ecologic Study. American Journal of Preventive Medicine, 49(2), 207–214. https://doi.org/10.1016/j.amepre.2015.02.008
Moore, M. D., & Bergner, C. M. (2016). The Relationship between Firearm Ownership and Violent Crime. Justice Policy Journal, 13(1), 1–20. http://search.ebscohost.com/login.aspx?direct=true&db=i3h&AN=115923708&site=ehost-live
Nur, W. (2020). Mathematical Model of Armed Criminal Group with Pre-emitive and Repressive Intervention. Journal OfMathematics: Theory and Applications, 2(2), 27–32.
Peter, O. J., Akinduko, O. B., Oguntolu, F. A., & Ishola, C. Y. (2018). Mathematical model for the control of infectious disease. Journal of Applied Sciences and Environmental Management, 22(4), 447. https://doi.org/10.4314/jasem.v22i4.1
Pratama, R. A. (2022). Impact Of Fear Behavior On Prey Population Growth Prey-Predator Interaction. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 16(2), 371–378. https://doi.org/10.30598/barekengvol16iss2pp371-378%0AIMPACT
Pratama, R. A., Fransina, M., Ruslau, V., & Musamus, U. (2022). Application of Beddington DeAngelis Response Function in Ecological Mathematical System : Study Fish Endemic Oliv Predator Species in Merauke. JTAM (Jurnal Teori Dan Aplikasi Matematika), 6(1), 51–60.
Pratama, R. A., Loupatty, M., Hariyanto, H., Caesarendra, W., & Rahmaniar, W. (2023). Fear and Group Defense Effect of a Holling Type IV Predator-Prey System Intraspecific Competition. Emerging Science Journal, 7(2), 385–395. https://doi.org/10.28991/ESJ-2023-07-02-06
Puspitasari, N., Kusumawinahyu, W. M., & Trisilowati, T. (2021). Dynamic Analysis of the Symbiotic Model of Commensalism and Parasitism with Harvesting in Commensal Populations. JTAM (Jurnal Teori Dan Aplikasi Matematika), 5(1), 193. https://doi.org/10.31764/jtam.v5i1.3893
Schmidt, S., Heffernan, R., & Ward, T. (2021). The Cultural Agency-Model of Criminal Behavior. Aggression and Violent Behavior, 58(August). https://doi.org/10.1016/j.avb.2021.101554
Sooknanan, J., Bhatt, B., & Comissiong, D. M. G. (2013). Catching a Gang - A mathematical Model of the Spread of Gangs in a Population Treated as an Infectious Disease. International Journal of Pure and Applied Mathematics, 83(1), 25–43. https://doi.org/10.12732/ijpam.v83i1.4
Vaughn, M. G., & DeLisi, M. (2018). Criminal energetics: A theory of antisocial enhancement and criminal attenuation. Aggression and Violent Behavior, 38, 1–12. https://doi.org/10.1016/j.avb.2017.11.002
Verhulst, F. (2017). Nonlinear Differential Equations and Dynamic Systems (Issue May 2014). https://doi.org/10.1007/978-3-642-61453-8
Zaman, G., Jung, I. H., Torres, D. F. M., & Zeb, A. (2017). Mathematical Modeling and Control of Infectious Diseases. Computational and Mathematical Methods in Medicine, 2017, 7149154. https://doi.org/10.1155/2017/7149154
Zhilla, F., & Lamallari, B. (2015). Albanian Criminal Groups. Trends in Organized Crime, 18(4), 329–347. https://doi.org/10.1007/s12117-015-9253-0
DOI: https://doi.org/10.31764/jtam.v7i4.16255
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Rian Ade Pratama, Maria F V Ruslau
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: