Pattern Recognition of Food Security in Indonesia Using Biclustering Plaid Model
Abstract
Biclustering come in various algorithms, selecting the most suitable biclustering algorithm can be a challenging task. The performance of algorithms can vary significantly depending on the specific data characteristics. The Plaid model is one of popular biclustering algorithms, has gained recognition for its efficiency and versatility across various applications, including food security. Indonesia deals with complex food security challenges. The nation's unique geographic and socioeconomic diversity demands region-specific food security solutions. Identifying province-specific food security patterns is crucial for effective policymaking and resource allocation, ultimately promoting food sufficiency and stability at the regional level. This study assesses the performance of the Plaid model in identifying food security patterns at the provincial level in Indonesia. To optimize biclusters, we explore various parameter tuning scenarios (the choice of model, the number of layers, and the threshold value for row and column releases). The selection criteria are based on the change ratio of the initial matrix's mean square residue to the mean square residue of the Plaid model, the average mean square residue, and the number of biclusters. The constant column model was selected with a mean square residue change ratio of 0.52, an average mean square plaid model residue of 4.81, and it generates 6 overlapping biclusters. The results show each bicluster has unique characteristics. Notably, Bicluster 1 that consist of 2 provinces, exhibits the lowest food security levels, marked by variables X1, X2, X4, and X7. Furthermore, the variables X1, X4, and X7 consistently appear across several biclusters. This highlights the importance of prioritizing these three variables to improve the food security status of the regions.
Keywords
Full Text:
DOWNLOAD [PDF]References
Acharya, S., Saha, S., & Sahoo, P. (2019). Bi-clustering of microarray data using a symmetry-based multi-objective optimization framework. Soft Computing, 23(14), 5693–5714. https://doi.org/10.1007/s00500-018-3227-5
Ahmad, N., Shahnawaz, S. K., & Alam, Z. (2021). IAR Journal of Humanities and Social Science Food Insecurity: Concept, Causes, Effects and Possible Solutions. IAR Journal of Humanities and Social Science, 2(1), 105–113. https://doi.org/10.47310/jiarjhss.v02i01.016
Alberto Magalhães Leite, C., Luís Fernando Rainho Alves Torgo, O., Associado, P., & Maria Pinto Mora Pinto de Magalhães, C. (2016). Domain Oriented Biclustering Validation.
Babichev, S., Osypenko, V., Lytvynenko, V., Voronenko, M., & Korobchynskyi, M. (2018). Comparison Analysis of Biclustering Algorithms with the use of Artificial Data and Gene Expression Profiles. 2018 IEEE 38th International Conference on Electronics and Nanotechnology, ELNANO 2018 - Proceedings, 298–304. https://doi.org/10.1109/ELNANO.2018.8477439
BKP. (2021). Peta Ketahanan dan Kerentanan Pangan (Food Security and Vulnerability Atlas) 2021. Kementerian Pertanian. Jakarta.
BKP. (2021). Indeks Ketahanan Pangan 2021. Kementerian Pertanian. Jakarta.
BPS. (2021). Profil Kemiskinan di Indonesia September 2020. BRS, 16, 27-42, [Online]. Available: https://ipb.link/kemiskinan20.
Candelise, C., Saccone, D., & Vallino, E. (2021). An empirical assessment of the effects of electricity access on food security. World Development, 141, 105390. https://doi.org/10.1016/j.worlddev.2021.105390
Cao, S., Chang, W., Wan, C., Lu, X., Dang, P., Zhou, X., Zhu, H., Chen, J., Li, B., Zang, Y., Wang, Y., & Zhang, C. (2023). Pipeline for Characterizing Alternative Mechanisms (PCAM) based on bi-clustering to study colorectal cancer heterogeneity. Computational and Structural Biotechnology Journal, 21, 2160–2171. https://doi.org/10.1016/j.csbj.2023.03.028
Connell, J., Lowitt, K., Saint Ville, A., & Hickey, G. M. (2020). Food Security and Sovereignty in Small Island Developing States: Contemporary Crises and Challenges. In Food Security in Small Island States, 1–23. Springer Singapore. https://doi.org/10.1007/978-981-13-8256-7_1
Dharmawan, H., Sartono, B., Kurnia, A., Hadi, A. F., & Ramadhani, E. (2022). A Study of Machine Learning Algorithms to Measure The Feature Importance In Class-Imbalance Data Of Food Insecurity Cases In Indonesia. Communications in Mathematical Biology and Neuroscience, 2022, 101. https://doi.org/10.28919/cmbn/7636
Drewnowski, A. (2022). Food insecurity has economic root causes. In Nature Food 3(8), 555–556. Springer Nature. https://doi.org/10.1038/s43016-022-00577-w
Huang, Q., Chen, Y., Liu, L., Tao, D., & Li, X. (2020). On Combining Biclustering Mining and AdaBoost for Breast Tumor Classification. IEEE Transactions on Knowledge and Data Engineering, 32(4), 728–738. https://doi.org/10.1109/TKDE.2019.2891622
Kaban, P. A., Kurniawan, R., Caraka, R. E., Pardamean, B., Yuniarto, B., & Sukim. (2019). Biclustering method to capture the spatial pattern and to identify the causes of social vulnerability in Indonesia: A new recommendation for disaster mitigation policy. Procedia Computer Science, 157, 31–37. https://doi.org/10.1016/j.procs.2019.08.138
Karim, M. B., Kanaya, S., & Altaf-Ul-Amin, M. (2019). Implementation of BiClusO and its comparison with other biclustering algorithms. Applied Network Science, 4(1), 79. https://doi.org/10.1007/s41109-019-0180-x
Kléma, J., Malinka, F., & železný, F. (2018). Semantic biclustering for finding local, interpretable and predictive expression patterns. BMC Genomics, 18(S7), 752. https://doi.org/10.1186/s12864-017-4132-5
Lin, Q., Zhang, H., Wang, X., Xue, Y., Liu, H., & Gong, C. (2019). A novel parallel biclustering approach and its application to identify and segment highly profitable telecom customers. IEEE Access, 7, 28696–28711. https://doi.org/10.1109/ACCESS.2019.2898644
Majd, H. A., Shahsavari, S., Baghestani, A. R., Tabatabaei, S. M., Bashi, N. K., Tavirani, M. R., & Hamidpour, M. (2016). Evaluation of Plaid Models in Biclustering of Gene Expression Data. Scientifica, 2016, 1–8. https://doi.org/10.1155/2016/3059767
Mandal, K., Sarmah, R., & Bhattacharyya, D. K. (2021). PopBIC: Pathway-based order preserving biclustering algorithm towards the analysis of gene expression data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18(6), 2659–2670. https://doi.org/10.1109/TCBB.2020.2980816
Nicholls, K., & Wallace, C. (2021). Comparison of sparse biclustering algorithms for gene expression datasets. Briefings in Bioinformatics, 22(6), 1–16. https://doi.org/10.1093/bib/bbab140
Novidianto, R., & Irfani, R. (2020). Bicluster CC Algoritm Analysis to Identify Patterns of Food Insecurity in Indonesia. Jurnal Matematika, Statistika Dan Komputasi, 17(2), 325–338. https://doi.org/10.20956/jmsk.v17i2.12057
Padilha, V. A., & Campello, R. J. G. B. (2017). A systematic comparative evaluation of biclustering techniques. BMC Bioinformatics, 18(1), 55. https://doi.org/10.1186/s12859-017-1487-1
Patowary, P., Sarmah, R., & Bhattacharyya, D. K. (2020). Developing an effective biclustering technique using an enhanced proximity measure. In Network Modeling Analysis in Health Informatics and Bioinformatics, 9(1), 6. Springer. https://doi.org/10.1007/s13721-019-0211-7
Pontes, B., Giráldez, R., & Aguilar-Ruiz, J. S. (2015). Biclustering on expression data: A review. In Journal of Biomedical Informatics, 57, 163–180. Academic Press Inc. https://doi.org/10.1016/j.jbi.2015.06.028
Rahayu, R. S., Purwaningsih, Y., & Daerobi, A. (2019). Mapping Of Provincial Food Security In Indonesia Using Based Clustering Model. Jurnal Ekonomi Pembangunan: Kajian Masalah Ekonomi Dan Pembangunan, 20(1), 69-79. https://doi.org/DOI:10.23917/jep.v20i1.7096
Ratnasari, V., Tri, A., & Dani, R. (2023). Mapping the Provincial Food Security Conditions in Indonesia Using Cluster Ensemble-Based Mixed Data Clustering-Robust Clustering with Links (CEBMDC-ROCK). International Journal on Advanced Science, Engineering and Information Technology, 13(2), 611–617. https://doi.org/DOI:10.18517/ijaseit.13.2.16457
Rozaki, Z. (2021). Food security challenges and opportunities in indonesia post COVID-19. In Advances in Food Security and Sustainability. Elsevier Ltd, 6, 119–168.. https://doi.org/10.1016/bs.af2s.2021.07.002
Silva, M. G., Madeira, S. C., & Henriques, R. (2022). Water Consumption Pattern Analysis Using Biclustering: When, Why and How. Water (Switzerland), 14(12), 1–35. https://doi.org/10.3390/w14121954
Siswantining, T., Eriza Aminanto, A., Sarwinda, D., & Swasti, O. (2021). Biclustering analysis using plaid model on gene expression data of colon cancer. Austrian Journal of Statistics, 50(5), 101–114. https://doi.org/10.17713/ajs.v50i5.1195
Trimanto, R., Yustari, E., Nafisah, Z., Carolina, N., Irsalinda, N., & Setyorini, A. I. (2022). Indonesian provincial clustering using Elbow method for the national food security during pandemic. Bulletin of Applied Mathematics and Mathematics Education, 2(2), 51–58. https://doi.org/10.12928/bamme.v2i2.6166
Wang, B., Miao, Y., Zhao, H., Jin, J., & Chen, Y. (2016). A biclustering-based method for market segmentation using customer pain points. Engineering Applications of Artificial Intelligence, 47, 101–109. https://doi.org/10.1016/j.engappai.2015.06.005
Wulandari, C., Sumertajaya, I. M., & Aidi, M. N. (2023). Evaluation of Bicluster Analysis Results in Capture Fisheries Using the BCBimax Algorithm. 11(1), 57–66. https://doi.org/10.30595/juita.v11i1.15457
DOI: https://doi.org/10.31764/jtam.v7i4.16778
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Nur Hikmah, I Made Sumertajaya, Farit Mochamad Afendi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: