Development of Accuracy for the Weighted Fuzzy Time Series Forecasting Model Using Lagrange Quadratic Programming
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
A’yun, K., Abadi, A. M., & Saptaningtyas, F. Y. (2015). Application of Weighted Fuzzy Time Series Model to Forecast Trans Jogja’s Passengers. IJAPM 2015 Vol.5(2), 76-85.
Aliyev, R., Salehi, S., & Aliyev, R. (2019). Development of Fuzzy Time Series Model for Hotel Occupancy Forecasting. Sustainability 11, 793.
Assouto, A. B., Houensou, D. A., & Semedo, G. (2020). Price risk and farmers’ decisions: A case study from Benin. Scientific African Volume 8.
Bhowmik, R., & Wang, S. (2020). Stock Market Volatility and Return Analysis: A Systematic Literature Review. Entropy (Basel) 22(5), 522.
Daniswara, H. P., & Daryanto, W. M. (2019). Earning Per Share (EPS), Price Book Value (PBV), Return on Asset (ROA),Return on Equity (ROE), and Indeks Harga Saham Gabungan (IHSG) Effect, on Stock Return. South East Asia Journal of Contemporary Business, Economics and Law, Vol. 20, Issue 1 (DEC).
Devianto, D., Ramadani, K., Maiyastri, Asdi, Y., & Yollanda, M. (2022). The hybrid model of autoregressive integrated moving average and fuzzy time series Markov chain on long-memory data. Frontiers in Aplied Mathematics and Statistics.
Efendi, R., Ismail, Z., & Deris, M. (2013). Improved weight fuzzy time series as used in the exchange rates forecasting of us dollar to Ringgit Malaysia. International Journal of Computational Intelligence and Applications 12(1), 1-19.
Ferreira, A., Moore, M., & Mukherjee, S. (2019). Expectation errors in the foreign exchange market. Journal of International Money and Finance Volume 95, 44-51.
Haryono, E., Widodo, A., & Abusini, S. (2013). Kajian model Automatic Clustering-Fuzzy Time Series-Markov Chain dalam memprediksi data historis jumlah kecelakaan lalu lintas di kota Malang. Jurnal Sains Dasar 2(1).
Hilhami, M. S., Oktavianto, H., & Fitriyah, N. Q. (2020). Forecasting Harga Saham PT. Astra Agro Lestari dengan Metode Simple Moving Average dan Weighted Moving Average. Jurnal Teknik Informatika Fakultas Teknik UNEJ.
Khair, U., Fahmi, H., Al Hakim, S., & Rahim, R. (2017). Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error. Journal of Physics: Conference Series.
Kim, S., & Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting Volume 32, Issue 3, 669-679.
Lucas, P. O., Orang, O., de Lima e Silva, P., & Mendes, E. M. (2022). A Tutorial on Fuzzy Time Series Forecasting Models: Recent Advances and Challenges. Learning and Nonlinear Models. 19, 29-50.
Moghimi, B., Kamga, C., Safikhani, A., Mudigonda, S., & Vicuna, P. (2023). Non-Stationary Time Series Model for Station-Based Subway Ridership During COVID-19 Pandemic: Case Study of New York City. . Transportation Research Record, 2677(4), 463–477.
Rezvani, R., Barnaghi, P., & Enshaeifar, S. (2021). A New Pattern Representation Method for Time-Series Data. IEEE Transactions on Knowledge and Data Engineering, Vol. 33, No. 7.
Singh, P. (2021). FQTSFM: A fuzzy-quantum time series forecasting model. Information Sciences Volume 566, 57-79.
Subramanian, L. (2021). Effective Demand Forecasting in Health Supply Chains: Emerging Trend, Enablers, and Blockers. Logistics 5, 12.
Surono, S., Goh, K. W., Onn, C. W., Nurraihan, A., Siregar, N. S., Saeid, A. B., & Wijaya, T. T. (2022). Optimization of Markov Weighted Fuzzy Time Series Forecasting Using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). Emerging Science Journal Vol. 6, No. 6.
Tschora, L., Pierre, E., Plantevit, M., & Robardet, C. (2022). Electricity price forecasting on the day-ahead market using machine learning. Appl. Energy, 313.
Vadlamani, S. K., Xiao, T. P., & Yablonovitch, E. (2020). Physics successfully implements Lagrange multiplier optimization. PNAS Vol. 117, no. 43.
Wang, X., Kang, Y., Hyndman, R., & Li, F. (2023). Distributed ARIMA models for ultra-long time series. International Journal of Forecasting Volume 39, Issue 3, 1163-1184.
Widiyani, W., Setyawan, Y., & Jatipaningrum, M. T. (2022). Perbandingan Metode Fuzzy Time Series-Chen dan Weighted Fuzzy Integrated Time untuk Memprediksi Data Indeks Harga Saham Gabungan. Jurnal Statistika Industri dan Komputasi Volume 7, No. 1, 81 - 87.
Yolcu, O. C., & Lam, H.-K. (2017). A combined robust fuzzy time series method for prediction of time series. Neurocomputing, 247.
DOI: https://doi.org/10.31764/jtam.v7i4.16783
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Agus Fachrur Rozy, Solimun, Ni Wayan Surya Wardhani
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: