Development of Accuracy for the Weighted Fuzzy Time Series Forecasting Model Using Lagrange Quadratic Programming

Agus Fachrur Rozy, Solimun Solimun, Ni Wayan Surya Wardhani

Abstract


Limitation within the WFTS model, which relies on midpoints within intervals and linguistic variable relationships for assigning weights. This reliance can result in reduced accuracy, especially when dealing with extreme values during trend to seasonality transformations. This study employs the Weighted Fuzzy Time Series (WFTS) method to adjust predictive values based on actual data. Using Lagrange Quadratic Programming (LQP), estimated weights enhance the WFTS model. MAPE assesses accuracy as the model analyzes monthly IHSG closing prices from January 2017 to January 2023.The MAPE value of 0.61% results from optimizing WFTS with LQP. It utilizes a deterministic approach based on set membership counts in class intervals, continuously adjusting weights during fuzzification, minimizing the deviation between forecasted and actual data values.The Weighted Fuzzy Time Series Forecasting Model with Lagrange Quadratic Programming is effective in forecasting, indicated by a low MAPE value. This method evaluates each data point and adjusts weights, offering reliable investment insights for IHSG strategies..

Keywords


Fuzzy Time Series; Weighted Fuzzy Time Series; Lagrange Quadratic Programming; Mean Absolute Percentage Error.

Full Text:

DOWNLOAD [PDF]

References


A’yun, K., Abadi, A. M., & Saptaningtyas, F. Y. (2015). Application of Weighted Fuzzy Time Series Model to Forecast Trans Jogja’s Passengers. IJAPM 2015 Vol.5(2), 76-85.

Aliyev, R., Salehi, S., & Aliyev, R. (2019). Development of Fuzzy Time Series Model for Hotel Occupancy Forecasting. Sustainability 11, 793.

Assouto, A. B., Houensou, D. A., & Semedo, G. (2020). Price risk and farmers’ decisions: A case study from Benin. Scientific African Volume 8.

Bhowmik, R., & Wang, S. (2020). Stock Market Volatility and Return Analysis: A Systematic Literature Review. Entropy (Basel) 22(5), 522.

Daniswara, H. P., & Daryanto, W. M. (2019). Earning Per Share (EPS), Price Book Value (PBV), Return on Asset (ROA),Return on Equity (ROE), and Indeks Harga Saham Gabungan (IHSG) Effect, on Stock Return. South East Asia Journal of Contemporary Business, Economics and Law, Vol. 20, Issue 1 (DEC).

Devianto, D., Ramadani, K., Maiyastri, Asdi, Y., & Yollanda, M. (2022). The hybrid model of autoregressive integrated moving average and fuzzy time series Markov chain on long-memory data. Frontiers in Aplied Mathematics and Statistics.

Efendi, R., Ismail, Z., & Deris, M. (2013). Improved weight fuzzy time series as used in the exchange rates forecasting of us dollar to Ringgit Malaysia. International Journal of Computational Intelligence and Applications 12(1), 1-19.

Ferreira, A., Moore, M., & Mukherjee, S. (2019). Expectation errors in the foreign exchange market. Journal of International Money and Finance Volume 95, 44-51.

Haryono, E., Widodo, A., & Abusini, S. (2013). Kajian model Automatic Clustering-Fuzzy Time Series-Markov Chain dalam memprediksi data historis jumlah kecelakaan lalu lintas di kota Malang. Jurnal Sains Dasar 2(1).

Hilhami, M. S., Oktavianto, H., & Fitriyah, N. Q. (2020). Forecasting Harga Saham PT. Astra Agro Lestari dengan Metode Simple Moving Average dan Weighted Moving Average. Jurnal Teknik Informatika Fakultas Teknik UNEJ.

Khair, U., Fahmi, H., Al Hakim, S., & Rahim, R. (2017). Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error. Journal of Physics: Conference Series.

Kim, S., & Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting Volume 32, Issue 3, 669-679.

Lucas, P. O., Orang, O., de Lima e Silva, P., & Mendes, E. M. (2022). A Tutorial on Fuzzy Time Series Forecasting Models: Recent Advances and Challenges. Learning and Nonlinear Models. 19, 29-50.

Moghimi, B., Kamga, C., Safikhani, A., Mudigonda, S., & Vicuna, P. (2023). Non-Stationary Time Series Model for Station-Based Subway Ridership During COVID-19 Pandemic: Case Study of New York City. . Transportation Research Record, 2677(4), 463–477.

Rezvani, R., Barnaghi, P., & Enshaeifar, S. (2021). A New Pattern Representation Method for Time-Series Data. IEEE Transactions on Knowledge and Data Engineering, Vol. 33, No. 7.

Singh, P. (2021). FQTSFM: A fuzzy-quantum time series forecasting model. Information Sciences Volume 566, 57-79.

Subramanian, L. (2021). Effective Demand Forecasting in Health Supply Chains: Emerging Trend, Enablers, and Blockers. Logistics 5, 12.

Surono, S., Goh, K. W., Onn, C. W., Nurraihan, A., Siregar, N. S., Saeid, A. B., & Wijaya, T. T. (2022). Optimization of Markov Weighted Fuzzy Time Series Forecasting Using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). Emerging Science Journal Vol. 6, No. 6.

Tschora, L., Pierre, E., Plantevit, M., & Robardet, C. (2022). Electricity price forecasting on the day-ahead market using machine learning. Appl. Energy, 313.

Vadlamani, S. K., Xiao, T. P., & Yablonovitch, E. (2020). Physics successfully implements Lagrange multiplier optimization. PNAS Vol. 117, no. 43.

Wang, X., Kang, Y., Hyndman, R., & Li, F. (2023). Distributed ARIMA models for ultra-long time series. International Journal of Forecasting Volume 39, Issue 3, 1163-1184.

Widiyani, W., Setyawan, Y., & Jatipaningrum, M. T. (2022). Perbandingan Metode Fuzzy Time Series-Chen dan Weighted Fuzzy Integrated Time untuk Memprediksi Data Indeks Harga Saham Gabungan. Jurnal Statistika Industri dan Komputasi Volume 7, No. 1, 81 - 87.

Yolcu, O. C., & Lam, H.-K. (2017). A combined robust fuzzy time series method for prediction of time series. Neurocomputing, 247.




DOI: https://doi.org/10.31764/jtam.v7i4.16783

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Agus Fachrur Rozy, Solimun, Ni Wayan Surya Wardhani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: