Ratio Interval-Frequency Density with Modifications to the Weighted Fuzzy Time Series
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Çakır, S. (2023). Renewable energy generation forecasting in Turkey via intuitionistic fuzzy time series approach. Renewable Energy, 214(May), 194–200. https://doi.org/10.1016/j.renene.2023.05.132
Chen, H. C., Chen, W. J., & Zhou, Y. (2013). Estimation of chromaticity coordinates for LEDs array by modulation of red or yellow LEDs with artificial neural network. Proceedings - 2013 9th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2013, July, 88–91. https://doi.org/10.1109/IIH-MSP.2013.31
Chen, M. Y., & Chen, B. T. (2015). A hybrid fuzzy time series model based on granular computing for stock price forecasting. Information Sciences, 294, 227–241. https://doi.org/10.1016/j.ins.2014.09.038
Chen, S., & Hsu, C. (2004). ANew Method to Forecast Enrollments Using Fuzzy Time Series. International Journal of Applied Science and Engineering, 2. https://doi.org/10.6703/IJASE.2004.2(3).234
Chen, S. M. (1996). Forecasting enrollments based on fuzzy time series. Fuzzy Sets and Systems, 81(3), 311–319. https://doi.org/10.1016/0165-0114(95)00220-0
Chen, S. M. (2002). Forecasting enrollments based on high-order fuzzy time series. Cybernetics and Systems, 33(1), 1–16. https://doi.org/10.1080/019697202753306479
Chen, S. M., & Chung, N. Y. (2006). Forecasting enrollments using high-order fuzzy time series and genetic algorithms. International Journal of Intelligent Systems, 21(5), 485–501. https://doi.org/10.1002/int.20145
Chen, T. L., Cheng, C. H., & Jong Teoh, H. (2007). Fuzzy time-series based on Fibonacci sequence for stock price forecasting. Physica A: Statistical Mechanics and Its Applications, 380(1–2), 377–390. https://doi.org/10.1016/j.physa.2007.02.084
Cheng, C. H., & Yang, J. H. (2018). Fuzzy time-series model based on rough set rule induction for forecasting stock price. Neurocomputing, 302, 33–45. https://doi.org/10.1016/j.neucom.2018.04.014
Haikal, A. N., Vianita, E., Sam, M., Surarso, B., & Hariyanto, S. (2022). Triangular Fuzzy Time Series for Two Factors High-order based on Interval Variations. 6(3), 759–776.
Hariyanto, S., Sumanto, Y. D., Khabibah, S., & Zaenurrohman. (2023). Average-Based Fuzzy Time Series Markov Chain Based on Frequency Density Partitioning. Journal of Applied Mathematics, 2023. https://doi.org/10.1155/2023/9319883
Huarng, K., & Yu, T. H. K. (2006). Ratio-based lengths of intervals to improve fuzzy time series forecasting. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 36(2), 328–340. https://doi.org/10.1109/TSMCB.2005.857093
Irawanto, B., Ningrum, R. W., Surarso, B., & Farikhin. (2019). An improved forecasting method of frequency density partitioning (FDP) based on fuzzy time series (FTS). Journal of Physics: Conference Series, 1321(2). https://doi.org/10.1088/1742-6596/1321/2/022082
Jeng, D. J. F., Watada, J., Wu, B., & Wu, J. Y. (2006). Fuzzy forecasting with DNA computing. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4287 LNCS, 324–336. https://doi.org/10.1007/11925903_25
Jiang, P., Dong, Q., Li, P., & Lian, L. (2017). A novel high-order weighted fuzzy time series model and its application in nonlinear time series prediction. Applied Soft Computing Journal, 55, 44–62. https://doi.org/10.1016/j.asoc.2017.01.043
Jilani, T. A., Muhammad, S., Burney, A., & Ardil, C. (2007). Fuzzy metric approach for fuzzy time series forecasting based on frequency density based partitioning. Internaltional Journal of Computer, Electrical,Automation, Control and Information Engineering, 4(7), 39–44.
Lee, L. W., Wang, L. H., Chen, S. M., & Leu, Y. H. (2006). Handling forecasting problems based on two-factors high-order fuzzy time series. IEEE Transactions on Fuzzy Systems, 14(3), 468–477. https://doi.org/10.1109/TFUZZ.2006.876367
Lewis, C. . (1982). Industrial and business forecasting methods. In Journal of Forecasting. Butterworths.
Lu, W., Chen, X., Pedrycz, W., Liu, X., & Yang, J. (2015). Using interval information granules to improve forecasting in fuzzy time series. International Journal of Approximate Reasoning, 57, 1–18. https://doi.org/10.1016/j.ijar.2014.11.002
Mirzaei Talarposhti, F., Javedani Sadaei, H., Enayatifar, R., Gadelha Guimarães, F., Mahmud, M., & Eslami, T. (2016). Stock market forecasting by using a hybrid model of exponential fuzzy time series. International Journal of Approximate Reasoning, 70, 79–98. https://doi.org/10.1016/j.ijar.2015.12.011
Mukminin, U. S., Irawanto, B., Surarso, B., & Farikhin. (2021). Fuzzy time series based on frequency density-based partitioning and k-means clustering for forecasting exchange rate. Journal of Physics: Conference Series, 1943(1). https://doi.org/10.1088/1742-6596/1943/1/012119
Punyapornwithaya, V., Arjkumpa, O., Buamithup, N., Kuatako, N., Klaharn, K., Sansamur, C., & Jampachaisri, K. (2023). Forecasting of daily new lumpy skin disease cases in Thailand at different stages of the epidemic using fuzzy logic time series, NNAR, and ARIMA methods. Preventive Veterinary Medicine, 217(June), 105964. https://doi.org/10.1016/j.prevetmed.2023.105964
Rubio, A., Bermúdez, J. D., & Vercher, E. (2016). Forecasting portfolio returns using weighted fuzzy time series methods. International Journal of Approximate Reasoning, 75, 1–12. https://doi.org/10.1016/j.ijar.2016.03.007
Severiano, C. A., Silva, P. C. de L. e., Weiss Cohen, M., & Guimarães, F. G. (2021). Evolving fuzzy time series for spatio-temporal forecasting in renewable energy systems. Renewable Energy, 171, 764–783. https://doi.org/10.1016/j.renene.2021.02.117
Singh, P., & Borah, B. (2013). An efficient time series forecasting model based on fuzzy time series. Engineering Applications of Artificial Intelligence, 26(10), 2443–2457. https://doi.org/10.1016/j.engappai.2013.07.012
Singh, P., & Borah, B. (2014). Forecasting stock index price based on M-factors fuzzy time series and particle swarm optimization. International Journal of Approximate Reasoning, 55(3), 812–833. https://doi.org/10.1016/j.ijar.2013.09.014
Song, Q., & Chissom, B. S. (1993). Forecasting enrollments with fuzzy time series - Part I. Fuzzy Sets and Systems, 54(1), 1–9. https://doi.org/10.1016/0165-0114(93)90355-L
Tanuwijaya, K., & Chen, S. M. (2009). A new method to forecast enrollments using fuzzy time series and clustering techniques. Proceedings of the 2009 International Conference on Machine Learning and Cybernetics, 5(July), 3026–3029. https://doi.org/10.1109/ICMLC.2009.5212604
Tavares, T. H. B. de C., Ferreira, B. P., & Mendes, E. M. A. M. (2022). Fuzzy time series model based on red–black trees for stock index forecasting[Formula presented]. Applied Soft Computing, 127, 109323. https://doi.org/10.1016/j.asoc.2022.109323
Vianita, E., Sam’an, M., Haikal, A. N., Mufaricha, I. S., Tjahjana, R. H., & Udjiani, T. (2023). The cross-association relation based on intervals ratio in fuzzy time series. International Journal of Electrical and Computer Engineering, 13(2), 2040–2051. https://doi.org/10.11591/ijece.v13i2.pp2040-2051
Yu, H. K. (2005). Weighted fuzzy time series models for TAIEX forecasting. Physica A: Statistical Mechanics and Its Applications, 349(3–4), 609–624. https://doi.org/10.1016/j.physa.2004.11.006
Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8, 338--353. https://doi.org/10.1016/S0019-9958(65)90241-X
Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning-I. Information Sciences, 8(3), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5
DOI: https://doi.org/10.31764/jtam.v8i1.16910
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Etna Vianita
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: