Matric Flux Potential in Time Independent Infiltration Problems from a Single Triangular and a Trapezoidal Irrigation Channel
Abstract
In this paper, steady infiltration problems into a homogeneous soil from a single triangular and trapezoidal irrigation channel are considered. The governing equation is Richard's equation that represents the movement of water in unsaturated soil. It is a non-linear equation and can be solved by linearizing to become a modified Helmholtz equation. Dual Reciprocity Boundary Element Methods (DRBEM) are used in this study to numerically solve the modified Helmholtz equation. Therefore, by using a provided solution, the numerical Matric Flux Potential (MFP) is calculated. This method was applied to the homogeneous soil problem of stationer infiltration from triangular and trapezoidal single irrigation. Both numerical solutions were compared. The result show that the MFP value from the triangular irrigation is higher than the trapezoidal irrigation. This indicates that content water from the triangular irrigation channel is higher than the trapezoidal irrigation channel.
Keywords
Full Text:
DOWNLOAD [PDF]References
Amoozegar-Fard, A., Warrick, A. W., & Lomen, D. O. (1984). Design Nomographs for Trickle Irrigation Systems. Journal of Irrigation and Drainage Engineering, 110(2), 107–120. https://doi.org/https://doi.org/10.1061/(ASCE)0733-9437(1984)110:2(10
Ang, W.-T. (2007). A Beginner’s Course in Boundary Element Methods. Universal Publisher. https://books.google.co.id/books?hl=id&lr=&id=c46cVdAJKZ0C&oi=fnd&pg=PA9&dq=Ang,+W.-T.+(2007).+A+Beginner%E2%80%99s+Course+in+Boundary+Element+Methods.+Universal+Publisher.&ots=wHfw3K3b3B&sig=L3K78N477IBOt6e99rPOQ3357hg&redir_esc=y#v=onepage&q=Ang%2C%20W.-T.%20(2007).%20A%20Beginner%E2%80%99s%20Course%20in%20Boundary%20Element%20Methods.%20Universal%20Publisher.&f=false
Azis, M. I., L.Clements, D., & Lobo, M. (2003). A boundary element method for steady infiltration from periodic channels. ANZIAM Journal, 44(April), 61. https://doi.org/10.21914/anziamj.v44i0.672
Batu, V. (1978). Steady Infiltration from Single and Periodic Strip Sources. Soil Science Society of America Journal, 42(4), NP. https://doi.org/10.2136/sssaj1978.03615995004200040033x
Bigah, Y., Rousseau, A. N., & Gumiere, S. J. (2019). Development of a steady-state model to predict daily water table depth and root zone soil matric potential of a cranberry field with a subirrigation system. Agricultural Water Management, 213(December 2018), 1016–1027. https://doi.org/10.1016/j.agwat.2018.12.024
Chávez-Negrete, C., Domínguez-Mota, F. J., & Santana-Quinteros, D. (2018). Numerical solution of Richards’ equation of water flow by generalized finite differences. Computers and Geotechnics, 101(May), 168–175. https://doi.org/10.1016/j.compgeo.2018.05.003
Clements, D. L., & Lobo, M. (2010). A BEM for time dependent infiltration from an irrigation channel. Engineering Analysis with Boundary Elements, 34(12), 1100–1104. https://doi.org/10.1016/j.enganabound.2010.06.013
Fendoğlu, H., Bozkaya, C., & Tezer-Sezgin, M. (2018). DBEM and DRBEM solutions to 2D transient convection-diffusion-reaction type equations. Engineering Analysis with Boundary Elements, 93, 124–134. https://doi.org/10.1016/j.enganabound.2018.04.011
Gardner, W. R. (1958). Some Steady-State Solutions of The Unsaturated Moisture Flow Equation With Appliation to Evaporation from A Water Table. Soil Science, 85(4), 228–232. https://doi.org/10.1097/00010694-195804000-00006
Gümgüm, S., & Tezer-Sezgin, M. (2014). DRBEM solution of mixed convection flow of nanofluids in enclosures with moving walls. Journal of Computational and Applied Mathematics, 259(PART B), 730–740. https://doi.org/10.1016/j.cam.2013.05.006
Han Aydin, S., & Tezer-Sezgin, M. (2014). A DRBEM solution for MHD pipe flow in a conducting medium. Journal of Computational and Applied Mathematics, 259(PART B), 720–729. https://doi.org/10.1016/j.cam.2013.05.010
Li, Y., Clough, T. J., Moinet, G. Y. K., & Whitehead, D. (2021). Emissions of nitrous oxide, dinitrogen and carbon dioxide from three soils amended with carbon substrates under varying soil matric potentials. European Journal of Soil Science, 72(5), 2261–2275. https://doi.org/10.1111/ejss.13124
List, F., & Radu, F. A. (2016). A study on iterative methods for solving Richards ’ equation. Computational Geosciences, 1930, 341–353. https://doi.org/10.1007/s10596-016-9566-3
Lobo, M. (2008). Boundary Element Methods For The Solution Of A Class Of Infiltration Problems. University of Adelaide. https://digital.library.adelaide.edu.au/dspace/handle/2440/49852
Madiun, K. (2020). Musim Penghujan Tiba, Waspadai Sistem Saluran Irigasi yang Kurang Baik. https://madiunkab.go.id/musim-penghujan-tiba-waspadai-sistem-saluran-irigasi-yang-kurang-baik/
Munadi. (2021). Dual Reciprocity Boundary Element Methods (DRBEM) pada Masalah Infiltrasi Stasioner dari suatu Saluran Irigasi Tunggal. Universitas Gajah Mada. https://etd.repository.ugm.ac.id/penelitian/detail/206532
Munadi, Solekhudin, I., Sumardi, & Zulijanto, A. (2019). Steady water flow from different types of single irrigation channel. JP Journal of Heat and Mass Transfer, 16(1), 95–106. https://doi.org/10.17654/HM016010095
Munadi, Solekhudin, I., Sumardi, & Zulijanto, A. (2020). A Numerical Study of Steady Infiltration from a Single Irrigation Channel with an Impermeable Soil Layer. Engineering Letters, 28(3), 1–8. https://www.engineeringletters.com/issues_v28/issue_3/EL_28_3_01.pdf
Nuchsin, P. (2014a). Pedoman Teknis Pengembangan Sumber Air. 1–36.
Nuchsin, P. (2014b). Pedoman Teknis Pengembangan Sumber Air.
Pinheiro, E. A. R., de Jong van Lier, Q., & Metselaar, K. (2017). A Matric Flux Potential Approach to Assess Plant Water Availability in Two Climate Zones in Brazil. Vadose Zone Journal, 17(1), 1–10. https://doi.org/10.2136/vzj2016.09.0083
Raats, P. A. C. (1970). Steady Infiltration from Line Sources and Furrows. Soil Science Society of America Proceedings, 34(5), 709. https://doi.org/10.2136/sssaj1970.03615995003400050015x
Solekhudin, I. (2016). Water infiltration from periodic trapezoidal channels with different types of root-water uptake. Far East Journal of Mathematical Sciences. https://www.pphmj.com/abstract/10392.htm
Solekhudin, I. (2018). A numerical method for time-dependent infiltration from periodic trapezoidal channels with different types of root-water uptake. IAENG International Journal of Applied Mathematics, 48(1), 84–89. https://www.iaeng.org/IJAM/issues_v48/issue_1/IJAM_48_1_12.pdf
Solekhudin, I., & Ang, K. C. (2013). A dual-reciprocity boundary element method for steady infiltration problems. ANZIAM Journal, 54(3), 171–180. https://doi.org/10.1017/S1446181113000187
Sun, H. G., Meerschaert, M. M., Zhang, Y., Zhu, J., & Chen, W. (2013). A fractal Richards’ equation to capture the non-Boltzmann scaling of water transport in unsaturated media. Advances in Water Resources, 52, 292–295. https://doi.org/10.1016/j.advwatres.2012.11.005
Tartakovsky, A. M., Marrero, C. O., Perdikaris, P., Tartakovsky, G. D., & Barajas-Solano, D. (2020). Physics-Informed Deep Neural Networks for Learning Parameters and Constitutive Relationships in Subsurface Flow Problems. AGU Publication, 56(5). https://doi.org/10.1029/2019WR026731
Yu, B., Cao, G., Meng, Z., Gong, Y., & Dong, C. (2021). Three-dimensional transient heat conduction problems in FGMs via IG-DRBEM. Computer Methods in Applied Mechanics and Engineering, 384, 1–23. https://doi.org/10.1016/j.cma.2021.113958
Zha, Y., Yang, J., Zeng, J., Tso, C. H. M., Zeng, W., & Shi, L. (2019). Review of numerical solution of Richardson–Richards equation for variably saturated flow in soils. Wiley Interdisciplinary Reviews, 6(5), 1–23. https://doi.org/10.1002/wat2.1364
DOI: https://doi.org/10.31764/jtam.v8i1.17033
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Munadi, Moh. Shaefur Rokhman, Dian Nataria Oktaviani, Ahmadi, Helmi Roichatul Jannah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: