Forecasting of Poverty Data Using Seasonal ARIMA Modeling in West Java Province
Abstract
Keywords
Full Text:
Download [PDF]References
Chang, P.-C., Wang, Y.-W., & Liu, C.-H. (2007). The development of a weighted evolving fuzzy neural network for PCB sales forecasting. Expert Systems with Applications, 32, 86–96. https://doi.org/doi:10.1016/j.eswa.2005.11.021
Claro, S., Paunesku, D., & Dweck, C. S. (2016). Growth mindset tempers the effects of poverty on academic achievement. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.1608207113
Ekananda, M. (2014). Analisis Data Time Series Untuk Penelitian Ekonomi, Manajemen, Dan Akutansi. Mitra Wacana.
Hermawan. (2011). Perbandingan metode Box-Jenkins dan Holt-Winters dalam memprediksi anomali Olr Pentad di kawasan barat Indonesia. Jurnal Sains Dirgantara, 9(1), 27–34.
Hillmer, S. C., & Wei, W. W. S. (2006). Time Series Analysis: Univariate and Multivariate Methods. Addison Wesley Publishing Company, Inc. https://doi.org/10.2307/2289741
Kaur, H., & Ahuja, S. (2019). SARIMA modelling for forecasting the electricity consumption of a health care building. International Journal of Innovative Technology and Exploring Engineering, 8(12), 2795–2799. https://doi.org/10.35940/ijitee.L2575.1081219
Kim, S., & Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting, 32(3), 669–679. https://doi.org/https://doi.org/10.1016/j.ijforecast.2015.12.003
Kumila, A., Sholihah, B., Evizia, Safitri, N., & Fitri, S. (2019). Perbandingan metode Moving Average dan metode Naïve dalam peramalan data kemiskinan. Jurnal Teori Dan Aplikasi Matematika (JTAM), 3(1), 65–73. https://doi.org/https://doi.org/10.31764/jtam.v3i1.764
Malkina-Pykh, I. G., & Pykh, Y. A. (2019). Some notes on the application of R-squared for evaluation the goodness-of-fit of nonlinear regression models. 8th International Nonlinear Science Conference, 1–7. https://doi.org/10.13140/RG.2.2.35129.21607
Matondang, E. (2017). Finding Out the Potency of Nusa Tenggara Timur in Poverty Allevation: The Effect of Local Government’s Policy. Jurnal Bina Praja, 9(2), 231–242. https://doi.org/10.21787/jbp.09.2017.231-242
Ngo, T. H. D. (2013). The Box-Jenkins Methodology for Time Series Models. Proceedings of the SAS Global Forum 2013 Conference.
Octora, M., & Kuntoro. (2013). Perbandingan metode ARIMA (Box Jenkins) dan metode Winter dalam peramalan jumlah kasus demam berdarah dengue. Jurnal Biometrika Dan Kependudukan, 2(1), 88–98.
Patowary, A. N., & Barman, M. P. (2017). Development of a SARIMA model to forecast Tuberculosis detection rate in the Dibrugarh District of Assam, India. International Journal of Advanced Research in Computer Science, 8(7), 984–988. https://doi.org/http://dx.doi.org/10.26483/ijarcs.v8i7.4424
Pongdatu, G. A. N., & Putra, Y. H. (2018). Seasonal Time Series Forecasting using SARIMA and Holt Winter’s Exponential Smoothing. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/407/1/012153
Rahmasari, U., S, E. H., Jannah, M., Pathullaili, Kurnia, L., & Satria, A. (2019). ARDL method: forecasting data kemiskinan di NTB. Jurnal Teori Dan Aplikasi Matematika (JTAM), 3(1), 52–57. https://doi.org/https://doi.org/10.31764/jtam.v3i1.767
Seymour, L., Brockwell, P. J., & Davis, R. A. (2002). Introduction to Time Series and Forecasting. Springer. https://doi.org/10.2307/2965440
Silastri, N., Iyan, R., & Sari, L. (2017). Pengaruh Jumlah Penduduk dan Pendapatan Domestik Regional Bruto (PDRB) terhadap Kemiskinan di Kabupaten Kuantan Singingi. Jurnal Online Mahasiswa Fakultas Ekonomi Universitas Riau, 4(1), 105–117.
Tadesse, K. B., & Dinka, M. O. (2017). Application of SARIMA model to forecasting monthly flows in Waterval River, South Africa. Journal of Water and Land Development, 35(X–XII), 229–236. https://doi.org/10.1515/jwld-2017-0088
Ukhra, A. U. (2014). Pemodelan dan peramalan data deret waktu dengan metode SEASONAL ARIMA. Jurnal Matematika UNAND, 3(3), 59–67.
W. Gikungu, S. (2015). Forecasting inflation rate in Kenya using SARIMA model. American Journal of Theoretical and Applied Statistics, 4(1), 15–18. https://doi.org/10.11648/j.ajtas.20150401.13
Wibowo, A. (2018). Model peramalan indeks harga konsumen kota Palangka Raya menggunakan Seasonal ARIMA (SARIMA). Jurnal Matematika, 17(2), 17–24.
Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79–82. https://doi.org/10.3354/cr030079
DOI: https://doi.org/10.31764/jtam.v4i1.1888
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 JTAM (Jurnal Teori dan Aplikasi Matematika)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: