Forecasting Maximum Water Level Data for Post Sangkuliman using An Artificial Neural Network Backpropagation Algorithm

Mislan Mislan, Andrea Tri Rian Dani

Abstract


Neural Network (NN) is an information processing system that has characteristics similar to biological neural networks. One of the algorithms in NN is Backpropagation Neural Network (BPNN). BPNN is an excellent method for dealing with complex pattern recognition problems. In this research, maximum water level forecasting was carried out at Sangkuliman Post using a Backpropagation Neural Network. This research aims to obtain modeling for forecasting maximum water level, as well as forecasting results using the best model. The research results show that the best model is five neurons in hidden layer 1 and 3 neurons in hidden layer 2 with the backpropagation algorithm, the activation function used is binary sigmoid, the learning rate is 0.001, and the maximum iteration is 10,000,000 with the smallest RMSE result being 1.816. The forecast results for the following 12 periods are 1.672, 1.779, 1.523, 1.271, 1.752, 1.692, 1.335, 1.479, 1.750, 1.779, 1.340, 1.269, and 1.754. Forecasting results can be used by various parties in decision-making and planning in multiple fields, as an example to see the patterns of biological and vegetable life around Sangkuliman Post. Based of forecasting results, certain months show an increase in maximum water levels.

 


Keywords


Neural Network; Backpropagation Neural Network; Forecasting; Root Mean Square Error.

Full Text:

DOWNLOAD [PDF]

References


Adya, M., & Collopy, F. (1998). How Effective are Neural Networks at Forecasting and Prediction? A Review and Evaluation. Journal of Forecasting, 17, 481–495. https://epublications.marquette.edu/mgmt_fac/77

Airlangga, G., Rachmat, A., & Lapihu, D. (2019). Comparison of exponential smoothing and neural network method to forecast rice production in Indonesia. Telkomnika (Telecommunication Computing Electronics and Control), 17(3), 1367–1375. https://doi.org/10.12928/TELKOMNIKA.V17I3.11768

Atiya, A. F., El-Shoura, S. M., Shaheen, S. I., & El-Sherif, M. S. (1999). A Comparison Between Neural-Network Forecasting Techniques-Case Study: River Flow Forecasting. In IEEE TRANSACTIONS ON NEURAL NETWORKS (Vol. 10, Issue 2). https://doi.org/10.1109/72.750569

Chu, H. J., Kong, S. J., & Chang, C. H. (2018). Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression. International Journal of Applied Earth Observation and Geoinformation, 65, 1–11. https://doi.org/10.1016/j.jag.2017.10.001

Dani, A. T. R., Putra, F. B., & A’yun, Q. Q. (2023). Red Chili Price Forecasting in Indonesia Based on Data from The Strategic Food Price Information Center using the Neural Network. International Journal of Scientific Research in Mathematical and Statistical Sciences, 10(3), 14–20. http://dx.doi.org/10.2139/ssrn.4497728

Dani, A. T. R., Ratnasari, V., & Budiantara, I. N. (2021). Optimal Knots Point and Bandwidth Selection in Modeling Mixed Estimator Nonparametric Regression. IOP Conference Series: Materials Science and Engineering, 1115(1), 012020. https://doi.org/10.1088/1757-899x/1115/1/012020

Khashei, M., & Bijari, M. (2010). An artificial neural network (p, d, q) model for timeseries forecasting. Expert Systems with Applications, 37(1), 479–489. https://doi.org/10.1016/j.eswa.2009.05.044

Kianfar, N., Mesgari, M. S., Mollalo, A., & Kaveh, M. (2022). Spatio-temporal modeling of COVID-19 prevalence and mortality using artificial neural network algorithms. Spatial and Spatio-Temporal Epidemiology, 40. https://doi.org/10.1016/j.sste.2021.100471

Leite, S. (2022). Using the SDGs for global citizenship education: definitions, challenges, and opportunities. Globalisation, Societies and Education, 20(3), 401–413. https://doi.org/10.1080/14767724.2021.1882957

Mansell, P., Philbin, S. P., & Broyd, T. (2020). Development of a new business model to measure organizational and project-level SDG impact-case study of a water utility company. Sustainability (Switzerland), 12(16). https://doi.org/10.3390/SU12166413

Mohamed, N., & Hura Ahmad, M. (2010). Short Term Load Forecasting Using Double Seasonal ARIMA Model. Proceedings of the Regional Conference on Statistical Sciences 2010, 57–73. https://www.researchgate.net/publication/228741241_Short_Term_Load_Forecasting_Using_Double_Seasonal_ARIMA_Model

Nugroho, H. Y. S. H., Indrawati, D. R., Wahyuningrum, N., Adi, R. N., Supangat, A. B., Indrajaya, Y., Putra, P. B., Cahyono, S. A., Nugroho, A. W., Basuki, T. M., Savitri, E., Yuwati, T. W., Narendra, B. H., Sallata, M. K., Allo, M. K., Bisjoe, A. R., Muin, N., Isnan, W., Ansari, F., … Hani, A. (2022). Toward Water, Energy, and Food Security in Rural Indonesia: A Review. Water (Switzerland), 14(10), 1–25. https://doi.org/10.3390/w14101645

Rahman, N. H. A., Lee, M. H., Suhartono, & Latif, M. T. (2015). Artificial neural networks and fuzzy time series forecasting: an application to air quality. Quality and Quantity, 49(6), 2633–2647. https://doi.org/10.1007/s11135-014-0132-6

Ramadani, K., Wahyuningsih, S., & Hayati, M. N. (2022). Forecasting Stock Price PT. Telkom Using Hybrid Time Series Regression Linear– Autoregressive Integrated Moving Average Model. Jurnal Matematika, Statistika Dan Komputasi, 18(2), 293–307. https://doi.org/10.20956/j.v18i2.18837

Ratnasari, V., Budiantara, I. N., & Dani, A. T. R. (2021). Nonparametric Regression Mixed Estimators of Truncated Spline and Gaussian Kernel based on Cross-Validation ( CV ), Generalized Cross- Validation ( GCV ), and Unbiased Risk ( UBR ) Methods. International Journal on Advanced Science, Engineering and Information Technology, 11(6), 2400–2406.

Safitri, L., Mardiyati, S., & Rahim, H. (2018). Forecasting the mortality rates of Indonesian population by using neural network. Journal of Physics: Conference Series, 974(1). https://doi.org/10.1088/1742-6596/974/1/012030

Sari, N. R., Firdaus Mahmudy, W., Wibawa, A., & Wibawa, A. P. (2016). Backpropagation on neural network method for inflation rate forecasting in Indonesia Teacher Understanding of Literacy Movement in Schools View project Capacitated Vehicle Routing Problem (CVRP) View project Backpropagation on Neural Network Method for Inflation Rate Forecasting in Indonesia. Int. J. Advance Soft Compu. Appl, 8(3). https://www.researchgate.net/publication/313387413

Suhartono, Ashari, D. E., Prastyo, D. D., Kuswanto, H., & Lee, M. H. (2019). Deep neural network for forecasting inflow and outflow in Indonesia. Sains Malaysiana, 48(8), 1787–1798. https://doi.org/10.17576/jsm-2019-4808-26

Suhermi, N., Suhartono, Prastyo, D. D., & Ali, B. (2018). Roll motion prediction using a hybrid deep learning and ARIMA model. Procedia Computer Science, 144, 251–258. https://doi.org/10.1016/j.procs.2018.10.526

Sulandari, W., Subanar, Lee, M. H., & Rodrigues, P. C. (2020). Indonesian electricity load forecasting using singular spectrum analysis, fuzzy systems and neural networks. Energy, 190. https://doi.org/10.1016/j.energy.2019.116408

Suphawan, K., Kardkasem, R., & Chaisee, K. (2022). A Gaussian Process Regression Model for Forecasting Stock Exchange of Thailand. Trends in Sciences, 19(6). https://doi.org/10.48048/tis.2022.3045

Thamrin, Husni. (2020). Educational Aspects in Efforts to Realize SDGs in Indonesia. Journal of Advances in Education and Philosophy, 4(11), 473–477. https://doi.org/10.36348/jaep.2020.v04i11.007

Tkacz, G. (2001). Neural network forecasting of Canadian GDP growth. In International Journal of Forecasting (Vol. 17). www.elsevier.com/locate/ijforecast

Wang, Y., Zou, R., Liu, F., Zhang, L., & Liu, Q. (2021). A review of wind speed and wind power forecasting with deep neural networks. Applied Energy, 304. https://doi.org/10.1016/j.apenergy.2021.117766

Zhang, G. P., & Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European Journal of Operational Research, 160(2), 501–514. https://doi.org/10.1016/j.ejor.2003.08.037




DOI: https://doi.org/10.31764/jtam.v8i2.20112

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Mislan, Andrea Tri Rian Dani, Yossy Candra

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: