Rainfall Forecasting Using an Adaptive Neuro-Fuzzy Inference System with a Grid Partitioning Approach to Mitigating Flood Disasters
Abstract
Hydrometeorological disasters are one of the disasters that often occur in big cities like Semarang. Hydrometeorological disasters that often occur are floods caused by high-intensity rainfall in the area. Early mitigation needs to be done by knowing about future rain. Rainfall data in Semarang City fluctuates, so the Adaptive Neuro-Fuzzy Inference System (ANFIS) method approach is very appropriate. This research will use the Grid Partitioning (GP) approach to produce more accurate forecasting. The data used in this research is daily rainfall observation data from the Meteorology Climatology Geophysics Agency (BMKG). The membership functions used are Gaussian and Generalized Bell. The two membership functions will be compared based on the RMSE and MAPE values to get the best one. The data used in this research is daily rainfall data. Rainfall in Semarang City every month experiences anomalies, which can result in flood disasters. The ANFIS-GP method with a Gaussian membership function is the best, with an RMSE value of 0.0898 and a MAPE of 5.2911. Based on the forecast results for the next thirty days, a rainfall anomaly of 102.53 mm on the thirtieth day could cause a flood disaster.
Keywords
Full Text:
DOWNLOAD [PDF]References
Abebe, W. T., & Endalie, D. (2023). Artificial intelligence models for prediction of monthly rainfall without climatic data for meteorological stations in Ethiopia. Journal of Big Data, 10(1). https://doi.org/10.1186/s40537-022-00683-3
Bushara, N. O., & Abraham, A. (2015). Using Adaptive Neuro-Fuzzy Inference System (ANFIS) to Improve the Long-term Rainfall Forecasting. Journal of Network and Innovative Computing, 3(1), 146–158. www.mirlabs.net/jnic/index.html
Chukwueloka, E. H., & Nwosu, A. O. (2023). Modelling and Prediction of Rainfall in the North-Central Region of Nigeria Using ARIMA and NNETAR Model. In J. C. Egbueri, J. O. Ighalo, & C. B. Pande (Eds.), Climate Change Impacts on Nigeria: Environment and Sustainable Development (pp. 91–114). Springer International Publishing. https://doi.org/10.1007/978-3-031-21007-5_6
Dirgahayu, D., Jaya, I. N. S., Purwadhi, F. S. H., Ardiansyah, M., & Triwidodo, H. (2012). Deteksi Kondisi Ketahanan Pangan Beras Menggunakan Pemodelan Spasial Kerentanan Pangan. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan, 2(2), 85–93. https://api.semanticscholar.org/CorpusID:202167031
Fatkhurokhman Fauzi, Dewi Ratnasari Wijaya, & Tiani Wahyu Utami. (2023). Brent Crude Oil Price Forecasting using the Cascade Forward Neural Network. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(4), 964–969. https://doi.org/10.29207/resti.v7i4.5052
Guerra, M. I. S., de Araújo, F. M. U., de Carvalho Neto, J. T., & Vieira, R. G. (2022). Survey on adaptative neural fuzzy inference system (ANFIS) architecture applied to photovoltaic systems. Energy Systems. https://doi.org/10.1007/s12667-022-00513-8
Gupta, S., Biswas, P. K., Aljafari, B., Thanikanti, S. B., & Das, S. K. (2023). Modelling, simulation and performance comparison of different membership functions based fuzzy logic control for an active magnetic bearing system. The Journal of Engineering, 2023(2), 1–20. https://doi.org/10.1049/tje2.12229
Hadeed, S. J., O’Rourke, M. K., Burgess, J. L., Harris, R. B., & Canales, R. A. (2020). Imputation methods for addressing missing data in short-term monitoring of air pollutants. Science of The Total Environment, 730(1), 139140–139150. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.139140
Harada, Y., Endo, H., & Takemura, K. (2020). Characteristics of Large-Scale Atmospheric Fields during Heavy Rainfall Events in Western Japan: Comparison with an Extreme Event in Early July 2018. Journal of the Meteorological Society of Japan. Ser. II, 98(6), 1–53. https://api.semanticscholar.org/CorpusID:225372844
Hidayat, A. M., Efendi, U., Agustina, L., & Winarso, P. A. (2018). Korelasi Indeks Nino 3.4 Dan Southern Oscillation Index (Soi) Dengan Variasi Curah Hujan Di Semarang. Jurnal Sains & Teknologi Modifikasi Cuaca, 19(2), 75–81. https://api.semanticscholar.org/CorpusID:126624024
Kharisudin, I., Fauzi, F., Iqbal, M., Arissinta, I. O., Khotilah, Z., & Alim, M. N. (2023). Electricity load forecasting using long short-term memory: Case study from Central Java and DIY. AIP Conference Proceedings, 2614(1), 040062–040067. https://doi.org/10.1063/5.0126313
Kusumawardhani, I., & Gernowo, R. (2015). Analisis Perubahan Iklim Berbagai Variabilitas Curah Hujan Dan Emisi Gas Metana (CH4) Dengan Metode Grid Analysis And Display System (GrADS) Di Kabupaten Semarang. YOUNGSTER PHYSICS JOURNAL, 4(1), 49–54. https://ejournal3.undip.ac.id/index.php/bfd/article/view/8052
Lakshmi, V., & Schaaf, K. (2001). Analysis of the 1993 midwestern flood using satellite and ground data. IEEE Trans. Geosci. Remote. Sens., 39(8), 1736–1743. https://api.semanticscholar.org/CorpusID:22718002
Li, J., Yan, G., Abbud, L. H., Alkhalifah, T., Alturise, F., Khadimallah, M. A., & Marzouki, R. (2023). Predicting the shear strength of concrete beam through ANFIS-GA–PSO hybrid modeling. Advances in Engineering Software, 181(1), 103475–103480. https://doi.org/https://doi.org/10.1016/j.advengsoft.2023.103475
Lima, C. H. R., Aghakouchak, A., & Lall, U. (2017). Classification of mechanisms, climatic context, areal scaling, and synchronization of floods: the hydroclimatology of floods in the Upper Paraná River basin, Brazil. Earth System Dynamics Discussions, 8(1), 1071–1091.
Navale, V., & Mhaske, S. (2023). Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) model for Forecasting Groundwater Level in the Pravara River Basin, India. Modeling Earth Systems and Environment, 9(2), 2663–2676. https://doi.org/10.1007/s40808-022-01639-5
Pendergrass, A. G. (2018). What precipitation is extreme? Science, 360(6393), 1072–1073. https://doi.org/10.1126/science.aat1871
Rohmana, S. F., Rusgiyono, A., & Sugito, S. (2019). Penentuan Faktor-Faktor Yang Mempengaruhi Intensitas Curah Hujan Dengan Analisis Diskriminan Ganda Dan Regresi Logistik Multinomial (Studi Kasus: Data Curah Hujan Kota Semarang dari Stasiun Meteorologi Maritim Tanjung Emas Periode Oktober 2018 – Maret 2019). Jurnal Gaussian, 8(3), 398–406. https://api.semanticscholar.org/CorpusID:218853001
Sahoo, G. K., Patel, N., Panda, D., Mishra, S., Samantaray, S., & Satapathy, D. P. (2023). Streamflow Forecasting Using Novel ANFIS-GWO Approach. In V. Bhateja, X.-S. Yang, J. C.-W. Lin, & R. Das (Eds.), Evolution in Computational Intelligence (pp. 141–152). Springer Nature Singapore. https://doi.org/10.1016/j.jhydrol.2017.09.007
Saleh, M., Anwar, S., Al-Ahmari, A. M., & AlFaify, A. Y. (2023). Prediction of Mechanical Properties for Carbon fiber/PLA Composite Lattice Structures Using Mathematical and ANFIS Models. Polymers, 15(7), 1–17. https://doi.org/10.3390/polym15071720
Samantaray, S., Sahoo, P., Sahoo, A., & Satapathy, D. P. (2023). Flood discharge prediction using improved ANFIS model combined with hybrid particle swarm optimisation and slime mould algorithm. Environmental Science and Pollution Research, 30(1), 83845–83872. https://doi.org/10.1007/s11356-023-27844-y
Sangar, B., Singh, M., & Sreejeth, M. (2024). An improved ANFIS model predictive current control approach for minimizing torque and current ripples in PMSM-driven electric vehicle. Electrical Engineering, 1(1), 1–11. https://doi.org/10.1007/s00202-024-02346-3
Sanikhani, H., Kisi, O., Nikpour, M. R., & Dinpashoh, Y. (2012). Estimation of Daily Pan Evaporation Using Two Different Adaptive Neuro-Fuzzy Computing Techniques. Water Resources Management, 26(15), 4347–4365. https://doi.org/10.1007/s11269-012-0148-4
Suryadi, Y., Sugianto, D. N., & Hadiyanto, H. (2017). Identifikasi Perubahan Suhu dan Curah Hujan serta Proyeksinya di Kota Semarang. Proceeding Biology Education Conference, 241–246. https://jurnal.uns.ac.id/prosbi/article/view/17786
Yildirim, A., Bilgili, M., & Ozbek, A. (2022). One-hour-ahead solar radiation forecasting by MLP, LSTM, and ANFIS approaches. Meteorology and Atmospheric Physics, 135(1), 1–17. https://doi.org/10.1007/s00703-022-00946-x
Yolanda, V., & Kariyam. (2023). Comparison of seasonal ARIMA and fuzzy time series for rainfall prediction. AIP Conference Proceedings, 2720(1), 020021–020026. https://doi.org/10.1063/5.0136947
Yonar, A., & Yonar, H. (2023). Modeling air pollution by integrating ANFIS and metaheuristic algorithms. Modeling Earth Systems and Environment, 9(2), 1621–1631. https://doi.org/10.1007/s40808-022-01573-6
Zhao, Z., Jia, Z. F., Guan, Z., & Xu, C. L. (2019). The Effect of Climatic and Non-climatic Factors on Groundwater Levels in the Jinghuiqu Irrigation District of the Shaanxi Province, China. Water, 11(5), 1–18. https://api.semanticscholar.org/CorpusID:164540591
Zhu, Z., Jin, D., Wu, Z., Xu, W., Yu, Y., Guo, X., & Wang, X. (Alice). (2022). Assessment of Surface Roughness in Milling of Beech Using a Response Surface Methodology and an Adaptive Network-Based Fuzzy Inference System. Machines, 10(7), 1–12. https://doi.org/10.3390/machines10070567
DOI: https://doi.org/10.31764/jtam.v8i2.20385
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Fatkhurokhman Fauzi, Relly Erlinda, Prizka Rismawati Arum
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: