Rainfall Forecasting Using an Adaptive Neuro-Fuzzy Inference System with a Grid Partitioning Approach to Mitigating Flood Disasters

Fatkhurokhman Fauzi, Relly Erlinda, Prizka Rismawati Arum

Abstract


Hydrometeorological disasters are one of the disasters that often occur in big cities like Semarang. Hydrometeorological disasters that often occur are floods caused by high-intensity rainfall in the area. Early mitigation needs to be done by knowing about future rain. Rainfall data in Semarang City fluctuates, so the Adaptive Neuro-Fuzzy Inference System (ANFIS) method approach is very appropriate. This research will use the Grid Partitioning (GP) approach to produce more accurate forecasting. The data used in this research is daily rainfall observation data from the Meteorology Climatology Geophysics Agency (BMKG). The membership functions used are Gaussian and Generalized Bell. The two membership functions will be compared based on the RMSE and MAPE values to get the best one. The data used in this research is daily rainfall data. Rainfall in Semarang City every month experiences anomalies, which can result in flood disasters. The ANFIS-GP method with a Gaussian membership function is the best, with an RMSE value of 0.0898 and a MAPE of 5.2911. Based on the forecast results for the next thirty days, a rainfall anomaly of 102.53 mm on the thirtieth day could cause a flood disaster.

 


Keywords


ANFIS; Grid Partitioning; Forecasting; Rainfall.

Full Text:

DOWNLOAD [PDF]

References


Abebe, W. T., & Endalie, D. (2023). Artificial intelligence models for prediction of monthly rainfall without climatic data for meteorological stations in Ethiopia. Journal of Big Data, 10(1). https://doi.org/10.1186/s40537-022-00683-3

Bushara, N. O., & Abraham, A. (2015). Using Adaptive Neuro-Fuzzy Inference System (ANFIS) to Improve the Long-term Rainfall Forecasting. Journal of Network and Innovative Computing, 3(1), 146–158. www.mirlabs.net/jnic/index.html

Chukwueloka, E. H., & Nwosu, A. O. (2023). Modelling and Prediction of Rainfall in the North-Central Region of Nigeria Using ARIMA and NNETAR Model. In J. C. Egbueri, J. O. Ighalo, & C. B. Pande (Eds.), Climate Change Impacts on Nigeria: Environment and Sustainable Development (pp. 91–114). Springer International Publishing. https://doi.org/10.1007/978-3-031-21007-5_6

Dirgahayu, D., Jaya, I. N. S., Purwadhi, F. S. H., Ardiansyah, M., & Triwidodo, H. (2012). Deteksi Kondisi Ketahanan Pangan Beras Menggunakan Pemodelan Spasial Kerentanan Pangan. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan, 2(2), 85–93. https://api.semanticscholar.org/CorpusID:202167031

Fatkhurokhman Fauzi, Dewi Ratnasari Wijaya, & Tiani Wahyu Utami. (2023). Brent Crude Oil Price Forecasting using the Cascade Forward Neural Network. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(4), 964–969. https://doi.org/10.29207/resti.v7i4.5052

Guerra, M. I. S., de Araújo, F. M. U., de Carvalho Neto, J. T., & Vieira, R. G. (2022). Survey on adaptative neural fuzzy inference system (ANFIS) architecture applied to photovoltaic systems. Energy Systems. https://doi.org/10.1007/s12667-022-00513-8

Gupta, S., Biswas, P. K., Aljafari, B., Thanikanti, S. B., & Das, S. K. (2023). Modelling, simulation and performance comparison of different membership functions based fuzzy logic control for an active magnetic bearing system. The Journal of Engineering, 2023(2), 1–20. https://doi.org/10.1049/tje2.12229

Hadeed, S. J., O’Rourke, M. K., Burgess, J. L., Harris, R. B., & Canales, R. A. (2020). Imputation methods for addressing missing data in short-term monitoring of air pollutants. Science of The Total Environment, 730(1), 139140–139150. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.139140

Harada, Y., Endo, H., & Takemura, K. (2020). Characteristics of Large-Scale Atmospheric Fields during Heavy Rainfall Events in Western Japan: Comparison with an Extreme Event in Early July 2018. Journal of the Meteorological Society of Japan. Ser. II, 98(6), 1–53. https://api.semanticscholar.org/CorpusID:225372844

Hidayat, A. M., Efendi, U., Agustina, L., & Winarso, P. A. (2018). Korelasi Indeks Nino 3.4 Dan Southern Oscillation Index (Soi) Dengan Variasi Curah Hujan Di Semarang. Jurnal Sains & Teknologi Modifikasi Cuaca, 19(2), 75–81. https://api.semanticscholar.org/CorpusID:126624024

Kharisudin, I., Fauzi, F., Iqbal, M., Arissinta, I. O., Khotilah, Z., & Alim, M. N. (2023). Electricity load forecasting using long short-term memory: Case study from Central Java and DIY. AIP Conference Proceedings, 2614(1), 040062–040067. https://doi.org/10.1063/5.0126313

Kusumawardhani, I., & Gernowo, R. (2015). Analisis Perubahan Iklim Berbagai Variabilitas Curah Hujan Dan Emisi Gas Metana (CH4) Dengan Metode Grid Analysis And Display System (GrADS) Di Kabupaten Semarang. YOUNGSTER PHYSICS JOURNAL, 4(1), 49–54. https://ejournal3.undip.ac.id/index.php/bfd/article/view/8052

Lakshmi, V., & Schaaf, K. (2001). Analysis of the 1993 midwestern flood using satellite and ground data. IEEE Trans. Geosci. Remote. Sens., 39(8), 1736–1743. https://api.semanticscholar.org/CorpusID:22718002

Li, J., Yan, G., Abbud, L. H., Alkhalifah, T., Alturise, F., Khadimallah, M. A., & Marzouki, R. (2023). Predicting the shear strength of concrete beam through ANFIS-GA–PSO hybrid modeling. Advances in Engineering Software, 181(1), 103475–103480. https://doi.org/https://doi.org/10.1016/j.advengsoft.2023.103475

Lima, C. H. R., Aghakouchak, A., & Lall, U. (2017). Classification of mechanisms, climatic context, areal scaling, and synchronization of floods: the hydroclimatology of floods in the Upper Paraná River basin, Brazil. Earth System Dynamics Discussions, 8(1), 1071–1091.

Navale, V., & Mhaske, S. (2023). Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) model for Forecasting Groundwater Level in the Pravara River Basin, India. Modeling Earth Systems and Environment, 9(2), 2663–2676. https://doi.org/10.1007/s40808-022-01639-5

Pendergrass, A. G. (2018). What precipitation is extreme? Science, 360(6393), 1072–1073. https://doi.org/10.1126/science.aat1871

Rohmana, S. F., Rusgiyono, A., & Sugito, S. (2019). Penentuan Faktor-Faktor Yang Mempengaruhi Intensitas Curah Hujan Dengan Analisis Diskriminan Ganda Dan Regresi Logistik Multinomial (Studi Kasus: Data Curah Hujan Kota Semarang dari Stasiun Meteorologi Maritim Tanjung Emas Periode Oktober 2018 – Maret 2019). Jurnal Gaussian, 8(3), 398–406. https://api.semanticscholar.org/CorpusID:218853001

Sahoo, G. K., Patel, N., Panda, D., Mishra, S., Samantaray, S., & Satapathy, D. P. (2023). Streamflow Forecasting Using Novel ANFIS-GWO Approach. In V. Bhateja, X.-S. Yang, J. C.-W. Lin, & R. Das (Eds.), Evolution in Computational Intelligence (pp. 141–152). Springer Nature Singapore. https://doi.org/10.1016/j.jhydrol.2017.09.007

Saleh, M., Anwar, S., Al-Ahmari, A. M., & AlFaify, A. Y. (2023). Prediction of Mechanical Properties for Carbon fiber/PLA Composite Lattice Structures Using Mathematical and ANFIS Models. Polymers, 15(7), 1–17. https://doi.org/10.3390/polym15071720

Samantaray, S., Sahoo, P., Sahoo, A., & Satapathy, D. P. (2023). Flood discharge prediction using improved ANFIS model combined with hybrid particle swarm optimisation and slime mould algorithm. Environmental Science and Pollution Research, 30(1), 83845–83872. https://doi.org/10.1007/s11356-023-27844-y

Sangar, B., Singh, M., & Sreejeth, M. (2024). An improved ANFIS model predictive current control approach for minimizing torque and current ripples in PMSM-driven electric vehicle. Electrical Engineering, 1(1), 1–11. https://doi.org/10.1007/s00202-024-02346-3

Sanikhani, H., Kisi, O., Nikpour, M. R., & Dinpashoh, Y. (2012). Estimation of Daily Pan Evaporation Using Two Different Adaptive Neuro-Fuzzy Computing Techniques. Water Resources Management, 26(15), 4347–4365. https://doi.org/10.1007/s11269-012-0148-4

Suryadi, Y., Sugianto, D. N., & Hadiyanto, H. (2017). Identifikasi Perubahan Suhu dan Curah Hujan serta Proyeksinya di Kota Semarang. Proceeding Biology Education Conference, 241–246. https://jurnal.uns.ac.id/prosbi/article/view/17786

Yildirim, A., Bilgili, M., & Ozbek, A. (2022). One-hour-ahead solar radiation forecasting by MLP, LSTM, and ANFIS approaches. Meteorology and Atmospheric Physics, 135(1), 1–17. https://doi.org/10.1007/s00703-022-00946-x

Yolanda, V., & Kariyam. (2023). Comparison of seasonal ARIMA and fuzzy time series for rainfall prediction. AIP Conference Proceedings, 2720(1), 020021–020026. https://doi.org/10.1063/5.0136947

Yonar, A., & Yonar, H. (2023). Modeling air pollution by integrating ANFIS and metaheuristic algorithms. Modeling Earth Systems and Environment, 9(2), 1621–1631. https://doi.org/10.1007/s40808-022-01573-6

Zhao, Z., Jia, Z. F., Guan, Z., & Xu, C. L. (2019). The Effect of Climatic and Non-climatic Factors on Groundwater Levels in the Jinghuiqu Irrigation District of the Shaanxi Province, China. Water, 11(5), 1–18. https://api.semanticscholar.org/CorpusID:164540591

Zhu, Z., Jin, D., Wu, Z., Xu, W., Yu, Y., Guo, X., & Wang, X. (Alice). (2022). Assessment of Surface Roughness in Milling of Beech Using a Response Surface Methodology and an Adaptive Network-Based Fuzzy Inference System. Machines, 10(7), 1–12. https://doi.org/10.3390/machines10070567




DOI: https://doi.org/10.31764/jtam.v8i2.20385

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Fatkhurokhman Fauzi, Relly Erlinda, Prizka Rismawati Arum

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: