Dynamical Analysis of a Predator-Prey Model Involving Intraspecific Competition in Predator and Prey Protection

Resmawan Resmawan, Agusyarif Rezka Nuha, Salmun K. Nasib, La Ode Nashar

Abstract


This article explains the interaction of the prey-predator model in the presence of wild harvesting and competition intra-specific predator populations and prey protection zones.  Model construction is based on literature studies related to the basic theory of the model and the biological properties between predator and prey populations. This study aims to look at the dynamic conditions of the predator-prey model in the form of the existence of prey and predator populations and the impact that occurs in the long term for both populations due to changes in parameter values. The model analysis begins with the formulation of the solution conditions and boundaries model, and next with the determination of the equilibrium point. Every equilibrium point is analyzed by the characteristic of its stability is neither local or global. The model owns three equilibrium points, namely the equilibrium point of population extinction (E_0), the equilibrium point of predator extinction (E_1), and the equilibrium point of persistence of the two populations (E_2). These equilibrium points are stable locally or globally if certain conditions are met. Next, it is shown that bifurcation proceeds Which describes the changing of characteristic stability point equilibrium Which depends on the threshold parameter values h_1, Ω^*, and ρ^*. In the end, numerical simulations are presented in the form of phase, time-series, and bifurcation diagrams to support the analytical results of the model, as well as to visually show the dynamic behaviour of the interaction between the two populations based on changes in predation levels, illegal harvesting, prey refuge zones, and intra-specific competition.

Keywords


Dynamical Analysis; Predator-Prey; Intraspesific Competition; Prey Protection; Bifurcation.

Full Text:

DOWNLOAD [PDF]

References


Abraham, A. J., Duvall, E. S., le Roux, E., Ganswindt, A., Clauss, M., Doughty, C. E., & Webster, A. B. (2023). Anthropogenic supply of nutrients in a wildlife reserve may compromise conservation success. Biological Conservation, 284, 110149. https://doi.org/10.1016/j.biocon.2023.110149

Anggriani, N., Panigoro, H. S., Rahmi, E., Peter, O. J., & Jose, S. A. (2023). A predator–prey model with additive Allee effect and intraspecific competition on predator involving Atangana–Baleanu–Caputo derivative. Results in Physics, 49, 106489. https://doi.org/10.1016/j.rinp.2023.106489

BioExpedition. (2017). Penguin Hunting. https://www.bioexpedition.com/penguin-hunting/

Castillo-chavez, C., & Song, B. (2004). Dynamical Models Of Tuberculosis and Their Applications. Mathematical Bioscienes and Engineering, 1(2), 361–404.

Chakraborty, K., Chakraborty, M., & Kar, T. K. (2011). Bifurcation and control of a bioeconomic model of a prey–predator system with a time delay. Nonlinear Analysis: Hybrid Systems, 5(4), 613–625. https://doi.org/10.1016/j.nahs.2011.05.004

Chow, C., Hoti, M., Li, C., & Lan, K. (2018). Local stability analysis on Lotka‐Volterra predator‐prey models with prey refuge and harvesting. Mathematical Methods in the Applied Sciences, 41(17), 7711–7732. https://doi.org/10.1002/mma.5234

Cresswell, W. (2019). Empirical Studies of Predator and Prey Behavior. In Encyclopedia of Animal Behavior (pp. 413–420). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.01010-4

Djakaria, I., Gaib, M. B., & Resmawan, R. (2021). Analysis of The Rosenzweig-MacArthur Predator-Prey Model with Anti-Predator Behavior. CAUCHY: Jurnal Matematika Murni Dan Aplikasi, 6(4), 260–269. https://doi.org/10.18860/ca.v6i4.11472

Gilad, O. (2008). Competition and Competition Models. In Encyclopedia of Ecology (pp. 707–712). Elsevier. https://doi.org/10.1016/B978-008045405-4.00666-2

Islam, M. A. (2015). A Comparative Study on Numerical Solutions of Initial Value Problems (IVP) for Ordinary Differential Equations (ODE) with Euler and Runge Kutta Methods. American Journal of Computational Mathematics, 05(03), 393–404. https://doi.org/10.4236/ajcm.2015.53034

Jordaan, R. K., Reisinger, R. R., Oosthuizen, W. C., & de Bruyn, P. J. N. (2021). Seasonal fission and fusion of killer whale, Orcinus orca, social structure at sub-Antarctic Marion Island. Animal Behaviour, 177, 223–230. https://doi.org/10.1016/j.anbehav.2021.05.007

Li, B., Liu, S., Cui, J., & Li, J. (2016). A Simple Predator-Prey Population Model with Rich Dynamics. Applied Sciences, 6(5), 151. https://doi.org/10.3390/app6050151

Los Huertos, M. (2020). The Rules: Population Growth and Competition. In Ecology and Management of Inland Waters (pp. 131–150). Elsevier. https://doi.org/10.1016/B978-0-12-814266-0.00017-9

Lotka, A. J. (1910). Contribution to the Theory of Periodic Reactions. The Journal of Physical Chemistry, 14(3), 271–274. https://doi.org/10.1021/j150111a004

Panigoro, H. S., Rahmi, E., Achmad, N., Mahmud, S. L., Resmawan, R., & Nuha, A. R. (2021). A discrete-time fractional-order Rosenzweig-Macarthur predator-prey model involving prey refuge. Communications in Mathematical Biology and Neuroscience. https://doi.org/10.28919/cmbn/6586

Panigoro, H. S., Rahmi, E., & Resmawan, R. (2023). Bifurcation analysis of a predator–prey model involving age structure, intraspecific competition, Michaelis–Menten type harvesting, and memory effect. Frontiers in Applied Mathematics and Statistics, 8. https://doi.org/10.3389/fams.2022.1077831

Patterson, S. K., Strum, S. C., & Silk, J. B. (2021). Resource competition shapes female–female aggression in olive baboons, Papio anubis. Animal Behaviour, 176, 23–41. https://doi.org/10.1016/j.anbehav.2021.03.013

Pekas, A., Tena, A., Peri, E., Colazza, S., & Cusumano, A. (2023). Competitive interactions in insect parasitoids: effects of microbial symbionts across tritrophic levels. Current Opinion in Insect Science, 55, 101001. https://doi.org/10.1016/j.cois.2022.101001

Pelage, L., Lucena-Frédou, F., Eduardo, L. N., Le Loc’h, F., Bertrand, A., Lira, A. S., & Frédou, T. (2022). Competing with each other: Fish isotopic niche in two resource availability contexts. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.975091

Pratama, R. A., Loupatty, M., Hariyanto, H., Caesarendra, W., & Rahmaniar, W. (2023). Fear and Group Defense Effect of a Holling Type IV Predator-Prey System Intraspecific Competition. Emerging Science Journal, 7(2), 385–395. https://doi.org/10.28991/ESJ-2023-07-02-06

Rayungsari, M., Suryanto, A., Kusumawinahyu, W. M., & Darti, I. (2022). Dynamical Analysis of a Predator-Prey Model Incorporating Predator Cannibalism and Refuge. Axioms, 11(3), 116. https://doi.org/10.3390/axioms11030116

Ruan, S. (2009). On Nonlinear Dynamics of Predator-Prey Models with Discrete Delay. Mathematical Modelling of Natural Phenomena, 4(2), 140–188. https://doi.org/10.1051/mmnp/20094207

Schmidt, K. (2019). Strategies of Predators and Their Prey in Large Mammal Predatory Interactions. In Encyclopedia of Animal Behavior (pp. 376–381). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.90105-5

Simmonds, M., & Fisher, S. (2010). Save the whales, not the whalers. New Scientist, 206(2755), 22–23. https://doi.org/10.1016/S0262-4079(10)60861-5

Stone, D. B., Martin, J. A., Cohen, B. S., Prebyl, T. J., Killmaster, C., & Miller, K. V. (2019). Intraspecific temporal resource partitioning at white-tailed deer feeding sites. Current Zoology, 65(2), 139–146. https://doi.org/10.1093/cz/zoy051

Tarjuelo, R., Morales, M. B., Arroyo, B., Mañosa, S., Bota, G., Casas, F., & Traba, J. (2017). Intraspecific and interspecific competition induces density‐dependent habitat niche shifts in an endangered steppe bird. Ecology and Evolution, 7(22), 9720–9730. https://doi.org/10.1002/ece3.3444

Taylor, M. S. (2021). Trade, Competitive Exclusion, and the Slow-Motion Extinction of the Southern Resident Killer Whales. https://doi.org/10.3386/w29014

Vanni, M. J., Duncan, J. M., González, M. J., & Horgan, M. J. (2009). Competition Among Aquatic Organisms. In Encyclopedia of Inland Waters (pp. 395–404). Elsevier. https://doi.org/10.1016/B978-012370626-3.00201-5

Volterra, V. (1926). Variazioni e Fluttuazioni del Numero d”Individui in Specie Animali Conviventi. Mem. Acad. Lincei Roma.

Wang, Y.-X., & Fan, S. (2023). Effects of B-D Functional Response and Protection Zone on a Predator-prey Model. Taiwanese Journal of Mathematics, 27(5). https://doi.org/10.11650/tjm/230501

Xiao, D., Li, W., & Han, M. (2006). Dynamics in a ratio-dependent predator–prey model with predator harvesting. Journal of Mathematical Analysis and Applications, 324(1), 14–29. https://doi.org/10.1016/j.jmaa.2005.11.048

Xiao, M., & Cao, J. (2009). Hopf bifurcation and non-hyperbolic equilibrium in a ratio-dependent predator–prey model with linear harvesting rate: Analysis and computation. Mathematical and Computer Modelling, 50(3–4), 360–379. https://doi.org/10.1016/j.mcm.2009.04.018

Yang, W. (2023). Bifurcation analysis in a diffusive predator–prey system with nonlinear growth rate and protection zone. Ricerche Di Matematica. https://doi.org/10.1007/s11587-023-00759-z

Zhang, Z., Upadhyay, R. K., & Datta, J. (2018). Bifurcation analysis of a modified Leslie–Gower model with Holling type-IV functional response and nonlinear prey harvesting. Advances in Difference Equations, 2018(1), 127. https://doi.org/10.1186/s13662-018-1581-3




DOI: https://doi.org/10.31764/jtam.v8i3.22154

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Resmawan, Agusyarif Rezka Nuha, Salmun K. Nasib, La Ode Nashar

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: