Modelling of Forecasting ASEAN-5 Stock Price Index Using GSTAR Model

Tuti Zakiyah, Wahyuni Windasari

Abstract


This research aims to apply the Generalized Space-Time Autoregressive (GSTAR) model to predict stock price indices in ASEAN-5 countries. Generalized Space Time Autoregressive (GSTAR) model is one of the most common used space-time model to modeling and predicting spatial and time series data. The GSTAR model produces a space-time model that adopts the stages of the Autoregressive Integrated Moving Average (ARIMA) model. This research uses parameter estimation using the Maximum Likelihood method, which is a method used to estimate parameter values by maximizing the probability function seen based on observations. This research uses secondary data in the form of Stock Price Index data from 5 countries in Asia, namely the Composite Stock Price Index (JCI), Philippine Stock Exchange (PSEi), Strait Time Index (STI), Kuala Lumpur Composite Index (KLCI), and Thailand Stock Exchange Index (SETI). Stock Price Index data was divided into in-sample data for Generalized Space-Time Autoregressive (GSTAR) modelling and out-sample data used to validate presumptive results. In-sample data was taken from January 4, 2021, to December 29, 2023, and then out-sample data for presumptive was as many as 5 from January 2, 2024, to January 8, 2024. From the modeling results, it was found that the mean MAPE value of the GSTAR model was smaller than that of the ARIMA model. Moreover, based on the presumptive results for the following 5 periods using the GSTAR (2.1) I(1) model, a Mean Absolute Percentage Error (MAPE) of less than 10% in each location. The values shows that GSTAR model is more accurate than the ARIMA model.

Keywords


GSTAR; ARIMA; Stock Price Index;

Full Text:

DOWNLOAD [PDF]

References


Agung, D., Ermawati, W. J., & Suprayitno, G. (2023). The Impact Of The Russia-Ukraine War On The Dynamics Of The Asean-5 Stock Market. Journal Eduvest, 3(12), 2184–2195. https://doi.org/10.1063/5.0124001

Cahyaningrum, A., & Robiyanto, R. (2021). Pengujian Integrasi Pasar Modal di Kawasan Asia Sebelum dan Selama Pandemi Covid-19. Jurnal Akuntansi Keuangan Dan Bisnis, 14(2), 211–220. https://doi.org/10.35143/jakb.v14i2.4673

Chini, E. Z. (2020). Global cities and local housing market cycles. The Journal of Real Estate Finance and Economics, 61(4), 671–697. https://doi.org/10.1007/s11146-019-09734-8

Fatah, B. I., Jody, & Budiasih. (2023). Causality Effect Among ASEAN-5 Stock Markets in COVID-19 Pandemic: VAR Model Approach. Enthusiastic : International Journal of Applied Statistics and Data Science, 3(1), 25–34. https://doi.org/10.20885/enthusiastic.vol3.iss1.art3

Gao, P., Zhang, R., & Yang, X. (2020). The Application of Stock Index Price Prediction with Neural Network. Mathematical and Computational Applications, 25(3), 53. https://doi.org/10.3390/mca25030053

Hamsyah, I. F. (2015). Perbandingan Gstar Dan Arima Filter Kalman Dalam Perbaikan Hasil Prediksi Debit Air Sungai Brantas. Institut Teknologi Sepuluh Nopember.

Harini, S., & Nuronia, N. (2020). Determination of consumer price index with generalized space-time autoregressive. IOP Conference Series: Earth and Environmental Science, 456(1), 1–7. https://doi.org/10.1088/1755-1315/456/1/012076

Hestuningtias, F., & Kurniawan, M. H. S. (2023). The Implementation of the Generalized Space-Time Autoregressive (GSTAR) Model for Inflation Prediction. Enthusiastic : International Journal of Applied Statistics and Data Science, 3(2), 176–188. https://doi.org/10.20885/enthusiastic.vol3.iss2.art5

Huang, Y., Deng, C., Zhang, X. and Bao, Y. (2022). Forecasting of stock price index using support vector regression with multivariate empirical mode decomposition. Journal of Systems and Information Technology, 24(2), 75–95. https://doi.org/10.1108/JSIT-12-2019-0262

Huang, Q., Li, M., & Wang, B. (2023). The dynamic causality between Chinese and ASEAN stock markets. Heliyon, 9(12), e22975. https://doi.org/10.1016/j.heliyon.2023.e22975

Jacob, T., Raphael, R., & Stebiya, M. V. (2021). Capital Market Integration of Asean-5 Countries : an Empirical Analysis. Hasanuddin Economics and Business Review, 5(2), 30. https://doi.org/10.26487/hebr.v5i2.2796

Ji, S., Dong, J., Wang, Y., & Liu, Y. (2019). Research on CPI Prediction based on Space-Time Model. 2019 6th International Conference on Dependable Systems and Their Applications (DSA), 377–382. https://doi.org/10.1109/DSA.2019.00058

Li, M., Ji, S., & Liu, G. (2018). Forecasting of Chinese E-Commerce Sales: An Empirical Comparison of ARIMA, Nonlinear Autoregressive Neural Network, and a Combined ARIMA-NARNN Model. Mathematical Problems in Engineering, 2018, 1–12. https://doi.org/10.1155/2018/6924960

Niu, H., Xu, K., & Wang, W. (2020). A hybrid stock price index forecasting model based on variational mode decomposition and LSTM network. Applied Intelligence, 50(12), 4296–4309. https://doi.org/10.3934/MBE.2020367

Orimoloye, L. O., Sung, M.-C., Ma, T., & Johnson, J. E. V. (2020). Comparing the effectiveness of deep feedforward neural networks and shallow architectures for predicting stock price indices. Expert Systems with Applications, 139(2020), 1–18. https://doi.org/10.1016/j.eswa.2019.112828

Patel, R., Goodell, J. W., Oriani, M. E., Paltrinieri, A., & Yarovaya, L. (2022). A bibliometric review of financial market integration literature. International Review of Financial Analysis, 80(2), 1–18. https://doi.org/10.1016/j.irfa.2022.102035

Sahin, C. (2023). Forecasting The Deposit Interest Rates with The ARIMA Method : Turkish Application for The Period 2010-2022. Sinop Üniversitesi Sosyal Bilimler Dergis, 7(1), 363–384. https://doi.org/10.30561/sinopusd.1282481

Sayadi, M. H., & Sari, R. (2021). The Capital Market Performance Analysis in 5 ASEAN Countries during The COVID-19 Pandemic. International Journal of Innovative Science and Research Technology, 6(5), 651–662. https://www.ijisrt.com/assets/upload/files/IJISRT21MAY622.pdf

Sella, N. P., Zuliansyah, A., & Nurmalia, G. (2021). Integrasi Indeks Harga Saham Syariah Indonesia pada Pasar Modal Syariah di India, Japan, Malaysia, China Menggunakan Metode Vector Error Correction Model (VECM). Al - Mashrof: Islamic Banking and Finance, 2(1), 36–55. http://dx.doi.org/10.24042/al-mashrof.v2i1.8798

Siami-Namini, S., & Namin, A. S. (2018). Forecasting Economics and Financial Time Series: ARIMA vs. LSTM. 1–19. https://doi.org/10.48550/arXiv.1803.06386

Talungke, Y., Nainggolan, N., & Hatidja, D. (2015). Model Generalized Space Time Autoregressive (GSTAR) dengan Analisis Data Menggunakan Software R. D’CARTESIAN, 4(2), 122. https://doi.org/10.35799/dc.4.2.2015.8649

Verma, P., Dumka, A., Bhardwaj, A., Ashok, A., Kestwal, M. C., & Kumar, P. (2021). A Statistical Analysis of Impact of COVID19 on the Global Economy and Stock Index Returns. SN Computer Science, 2(1), 1–13. https://doi.org/10.1007/s42979-020-00410-w

Wadi, S. Al. (2017). Improving Volatility Risk Forecasting Accuracy in Industry Sector. International Journal of Mathematics and Mathematical Sciences, 2017(1749106), 1–6. https://doi.org/10.1155/2017/1749106

Yin, Y., & Shang, P. (2016). Forecasting traffic time series with multivariate predicting method,. Applied Mathematics and Computation, 291(291), 266–278.

Zaenal, A., & Revadiansyah, F. (2022). Package ‘gstar’ : Generalized Space-Time Autoregressive Model (pp. 1–8). https://doi.org/10.1063/1.4724118>.Depends




DOI: https://doi.org/10.31764/jtam.v8i3.22738

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Tuti Zakiyah, Wahyuni Windasari

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: