Implementation of Gamma Regression and Gamma Geographically Weighted Regression on Case Poverty in Bengkulu Province

Ilham Alifa Azagi, I Made Sumertajaya, Asep Saefuddin

Abstract


Spatial analysis involves leveraging spatial references inherent in the data being analyzed. The method to be used in spatial analysis is the Geographically Weighted Regression (GWR) method. GWR is an extension of the linear regression model at each location by adding a weighting function to the model. Generally, the GWR model uses residuals with a normal distribution in its analysis. One distribution that can be used is the gamma distribution. With the development of methods in statistics, when a response variable follows a gamma distribution, analysis is performed using Gamma Regression (GR). GR analysis is conducted because the response variable meets the gamma distribution assumption. One method used for spatial effects with a gamma-distributed response variable is the Gamma Geographically Weighted Regression (GGWR) method. In 2022, Bengkulu Province was among the ten poorest provinces in Indonesia. Therefore, the main objective is to compare the GR and GGWR models and analyze the factors affecting poverty in Bengkulu Province using these models. The results of this study show that the GR model has an R² accuracy of 87.93%, while the GGWR model has an R² accuracy of 95.87%. This indicates that the best model for the analysis is the GGWR. An example of the GGWR model equation for poverty in Bengkulu Province is Y=exp⁡(-6.039+3.15×〖10〗^(-6) X_1-0.055X_2+0.156X_4-0.00021X_5+0.004X_7-0.021X_8-0.006X_9+4.794×〖10〗^(-5) X_10). The factors influencing the GGWR model in Bengkulu Province are Population, Life Expectancy, Average Years of Schooling, Adjusted Per Capita Expenditure, School Participation Rate, Per Capita Expenditure on Food, Households Receiving Rice for the Poor, and Gross Regional Domestic Product. The benefit of this research is to serve as a reference for the provincial government of Bengkulu regarding the variables that influence poverty. It is expected that this will help the government reduce the poverty rate in Bengkulu Province.

 


Keywords


Spatial Analysis; Poverty; Gamma Regression; Gamma Geographically; Weighted Regression.

Full Text:

DOWNLOAD [PDF]

References


Agustina, M. F., Wasono, R., & Darsyah, Y. (2015). Pemodelan Geographically Weighted Regression (GWR) Pada Tingkat Kemiskinan di Provinsi Jawa Tengah Monica. Statistika, 3(2), 67–74. https://doi.org/10.26714/jsunimus.3.2.2015.%25p

Ahmad, A. U., Balakrishnan, U. V, & Jha, P. S. (2021). A Study of Multicollinearity Detection and Rectification under Missing Values. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(1S), 399–418. https://doi.org/10.17762/turcomat.v12i1s.1880

Bossio, M. C., & Cuervo, E. C. (2015). Gamma regression models with the Gammareg R package. Comunicaciones En Estadística, 8(2), 211–223. https://doi.org/10.15332/s2027-3355.2015.0002.05

Cavanaugh, J. E., & Neath, A. A. (2019). The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdisciplinary Reviews: Computational Statistics, 11(3), 1–11. https://doi.org/10.1002/wics.1460

CSA. (2022). Katalog: 3205014. In Data dan Informasi Kemiskinan Kabupaten/Kota di Indonesia Tahun 2022. https://www.bps.go.id/id/publication/2022/11/30/3b084878f782dfa44e0025e0/data-dan-informasi-kemiskinan-kabupaten-kota-tahun-2022.html

DelSole, T., & Tippett, M. K. (2021). Correcting the corrected AIC. Statistics and Probability Letters, 173(1), 1–7. https://doi.org/10.1016/j.spl.2021.109064

Dewi, D. K. (2019). Penaksiran Parameter Dan Pengujian Hipotesis Mixed Geographically Weighted Bivariate Generalized Poisson Regression Testing of Geographically Weighted. http://repository.its.ac.id/id/eprint/45755

Dunder, E., Gumustekin, S., & Cengiz, M. A. (2016). Variable selection in gamma regression models via artificial bee colony algorithm. Journal of Applied Statistics, 45(1), 8–16. https://doi.org/10.1080/02664763.2016.1254730

Halme, T., & Koivunen, V. (2018). Distributed Nonparametric Inference Using a One-Sample Bootstraped Anderson-Darling Tesst and P-Value Fusion. 2018 IEEE Data Science Workshop, DSW 2018 - Proceedings, 56–60. https://doi.org/10.1109/DSW.2018.8439920

Halunga, A. G., Orme, C. D., & Yamagata, T. (2017). A heteroskedasticity robust Breusch–Pagan test for Contemporaneous correlation in dynamic panel data models. Journal of Econometrics, 198(2), 209–230. https://doi.org/10.1016/j.jeconom.2016.12.005

Heo, J., Lee, J. Y., & Kim, W. (2020). Bayesian information criterion accounting for the number of covariance parameters in mixed effects models. Communications for Statistical Applications and Methods, 27(3), 300–311. https://doi.org/10.29220/CSAM.2020.27.3.301

Isazade, V., Qasimi, A. B., Dong, P., Kaplan, G., & Isazade, E. (2023). Integration of Moran’s I, geographically weighted regression (GWR), and ordinary least square (OLS) models in spatiotemporal modeling of COVID-19 outbreak in Qom and Mazandaran Provinces, Iran. Modeling Earth Systems and Environment, 9(4), 3923–3937. https://doi.org/10.1007/s40808-023-01729-y

Jamil, S. A. M., Abdullah, M. A. A., Long, K. S., Jupri, N. F. M., & Mamat, M. (2018). A stepwise logistic regression analysis: An application toward poultry farm data in Johor. International Journal of Engineering and Technology(UAE), 7(3.28), 68–71. https://doi.org/10.14419/ijet.v7i3.28.20968

Kardiana, A., Wigena, A. H., Djuraidah, A., & Soleh, A. M. (2022). Statistical Downscaling Modeling for Monthly Rainfall Estimation Using Geographical and Temporal Weighted Gamma Regression. Asian Journal of Mathematics and Computer Research, 29(February), 43–55. https://doi.org/10.56557/ajomcor/2022/v29i27923

Kasuya, E. (2018). On the use of r and r squared in correlation and regression. Ecological Research, 34(1), 235–236. https://doi.org/10.1111/1440-1703.1011

Ma, Z., Xue, Y., & Hu, G. (2021). Geographically Weighted Regression Analysis for Spatial Economics Data: A Bayesian Recourse. International Regional Science Review, 44(5), 582–604. https://doi.org/10.1177/0160017620959823

Marcoulides, K. M., & Raykov, T. (2018). Evaluation of Variance Inflation Factors in Regression Models Using Latent Variable Modeling Methods. Educational and Psychological Measurement, 79(5), 874–882. https://doi.org/10.1177/0013164418817803

Plubin, B., & Siripanich, P. (2017). An alternative goodness-of-fit test for a gamma distribution based on the independence property. Chiang Mai Journal of Science, 44(3), 1180–1190. https://www.thaiscience.info/Journals/Article/CMJS/10985864.pdf

Putri, A. N., & Wardhani, A. K. (2020). Penerapan Metode Single Moving Average Untuk Peramalan Harga Cabai Rawit Hijau. Indonesian Journal of Technology, Informatics and Science (IJTIS), 2(1), 37–40. https://doi.org/10.24176/ijtis.v2i1.5653

Putri, D. E., Purhadi, & Prastyo, D. D. (2017). Parameter estimation and hypothesis testing on geographically weighted gamma regression. IOP Conference Series: Earth and Environmental Science, 893(1), 1–7. https://doi.org/10.1088/1755-1315/880/1/012044

Rash, A. J. H., Khodakarami, L., Muhedin, D. A., Hamakareem, M. I., & Ali, H. F. H. (2024). Spatial modeling of geotechnical soil parameters: Integrating ground-based data, RS technique, spatial statistics and GWR model. Journal of Engineering Research (Kuwait), 12(1), 75–85. https://doi.org/10.1016/j.jer.2023.10.026

Tang, Y., Xie, S., Huang, L., Liu, L., Wei, P., Zhang, Y., & Meng, C. (2022). Spatial Estimation of Regional PM2.5 Concentrations with GWR Models Using PCA and RBF Interpolation Optimization. Remote Sensing, 14(21), 1–26. https://doi.org/10.3390/rs14215626

Yamagata, Y., & Seya, H. (2019). Spatial analysis using big data: Methods and urban applications. In Spatial Analysis Using Big Data: Methods and Urban Applications. Japan:Elsevier. https://doi.org/10.1016/C2016-0-02101-0

Yasin, H., Sugito, S., & Prahutama, A. (2015). Analisis Data Kemiskinan Di Jawa Tengah Menggunakan Metode Mixed Geographically and Temporally Weighted Regressions (MGTWR). BIAStatistics, 9(1), 15–23. http://eprints.undip.ac.id/47841/

Zhao, Q., Fan, Q., & Zhou, P. (2022). An integrated analysis of GWR models and spatial econometric global models to decompose the driving forces of the township consumption development in Gansu, China. Sustainability (Switzerland), 14(1), 1–16. https://doi.org/10.3390/su14010281

Zhu, C., Idemudia, C. U., & Feng, W. (2019). Improved logistic regression model for diabetes prediction by integrating PCA and K-means techniques. Informatics in Medicine Unlocked, 17(3), 1–7. https://doi.org/10.1016/j.imu.2019.100179




DOI: https://doi.org/10.31764/jtam.v8i3.22930

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ilham Alifa Azagi, I Made Sumartejaya, Asep Saefuddin

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: