Dependency Model of the Exchange Rate with the Volume Export of Mining Products in Indonesia Using Copula
Abstract
This research aims to analyze the dependence of the IDR-USD exchange rate on the volume of mining exports in Indonesia using the copula approach. This dependence is important to understand considering that the exchange rate and mineral exports have a direct impact on the country's economy which depends on foreign exchange from this sector. Mineral exports are one of the country's main sources of foreign exchange, while the exchange rate influences the competitiveness of exports on the international market. The mining products taken are iron and steel, copper and nickel, which are Indonesia's leading commodities. The copula method was chosen because of its ability to capture and model non-linear dependencies between variables, without considering the distribution of each variable. Copula makes it possible to model the marginal distribution of exchange rates and export volumes separately from their dependency structures, which is in line with the complex and dynamic nature of the Indonesian mining sector economy. The results show that there is no significant dependence between the exchange rate and the volume of commodity exports taken. Therefore, this commodity export volume policy will not have a significant effect on fluctuations in the IDR-USD exchange rate and vice versa. This article can be a recommendation for exporters to understand that export volumes do not need to pay attention to exchange rate fluctuations.
Keywords
Full Text:
DOWNLOAD [PDF]References
Afriyie, J. K., Twumasi-Ankrah, S., Gyamfi, K. B., Arthur, D., & Pels, W. A. (2020). Evaluating the performance of unit root tests in single time series processes. Mathematics and Statistics, 8(6), 656–664. https://doi.org/10.13189/ms.2020.080605
Birnbaum, M. H., & Wan, L. (2020). Marter: Markov true and error model of drifting parameters. Judgment and Decision Making, 15(1), 47–73. https://doi.org/10.1017/s1930297500006902
Chatterjee, S., & Simonoff, J. S. (2020). Time Series Data and Autocorrelation. In Handbook of Regression Analysis (pp. 81–109). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118532843.ch5
Dani, S. C. R., Ismanto, B., & Sambara Sitorus, D. (2020). Pengaruh Ekspor Impor Dan Nilai Tukar Rupiah Terhadap Cadangan Devisa Indonesia Tahun2000-2019. Jurnal Ecodunamika, 3(2), 791–792.
Dirjen Mineral dan Batubara. (2023). Booklet Promosi Investasi Mineral tahun 2023 “Hilirisasi Bauksit.” In Direktorat Pembinaan Program Mineral dan Batubara, Kementerian ESDM RI. Kementerian ESDM. https://www.minerba.esdm.go.id/upload/ebook/20231113143857.pdf
Frohm, E. (2021). Dominant Currencies and the Export Supply Channel. In SSRN Electronic Journal (Issue 2580). https://doi.org/10.2139/ssrn.3898299
Haugh, M. (2016). An Introduction to Copulas. Quantitative Risk Management, 1.
Iancu, A., Anderson, G., Ando, S., Boswell, E., Gamba, A., Hakobyan, S., Lusinyan, L., Meads, N., & Wu, Y. (2020). Reserve Currencies in an Evolving International Monetary System. In Departmental Papers. International Monetary Fund. https://doi.org/10.5089/9781513560298.087
Jaworski, P., Hardle, W., Durante, F., & Rychlik, T. (2009). Copula theory and its applications. Lecture Notes in Statistics, 198. https://doi.org/10.1007/978-3-642-12465-5
Jeanne, O., & Rancière, R. (2006). The Optimal Level of International Reserves for Emerging Market Countries: Formulas and Applications (No. 229; 06). https://www.imf.org/external/pubs/ft/wp/2006/wp06229.pdf
Kementerian ESDM. (2021). Peluang Investasi Besi Indonesia. Direktorat Jenderal Mineral dan Batubara, Kementerian ESDM. https://www.esdm.go.id/assets/media/content/content-peluang-investasi-besi-indonesia.pdf
Kim, H. (2013). Statistical notes for clinical researchers : assessing normal distribution (2) using skewness and kurtosis. Restorative Dentistry & Endodontics, 7658(2), 52–54. https://doi.org/http://dx.doi.org/10.5395/rde.2013.38.1.52
Krouthén, J. (2015). Extreme joint dependencies with copulas A new approach for the structure of C-Vines. In U.U.D.M. Project Report (Vol. 24). https://www.diva-portal.org/smash/get/diva2:827739/FULLTEXT01.pdf
Ljung, G. M., & Box, G. E. P. (2014). On a measure of lack of fit in time series models. Biometrika, 65(2), 297–303. https://doi.org/10.2307/2335207
Ludlow, L., & Perez, S. (2018). Addressing Autocorrelation in Time Series Data: A Comparison of Four Analytic Methods Using Data from College Course Evaluations. General Linear Model Journal, 44(1), 11–23. https://doi.org/10.31523/glmj.044001.002
MacGillivray, H. . (1986). Skewness and Asymmetry: Measures and Orderings. The Annals of Statistics, 14(3), 994–1011. https://doi.org/10.1214/aos/1176350046
McNeil, A. J., Frey, R., & Embrechts, P. (2005). Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press. https://press.princeton.edu/books/hardcover/9780691166278/quantitative-risk-management
Moffat, I. U., & Akpan, E. A. (2019). White Noise Analysis: A Measure of Time Series Model Adequacy. Applied Mathematics, 10(11), 989–1003. https://doi.org/10.4236/am.2019.1011069
Ndoen, W. M., Amtiran, P. Y., & Minggu, M. (2020). The Effect of Exports on Economic Growth in Indonesia With the Exchange Rate of Rupiah as A Moderated Variables. Advances in Economics, Business and Management Research, 158, 520–524. https://doi.org/10.2991/aebmr.k.201212.073
Nelsen, R. B. (2006). An Introduction to Copulas (2nd Ed). Springer Science Business Media. https://link.springer.com/book/10.1007/0-387-28678-0
Okhrin, O., Trimborn, S., & Waltz, M. (2021). gofCopula: Goodness-of-Fit Tests for Copulae. R Journal, 13(1), 467–498. https://doi.org/10.32614/rj-2021-060
Ping, H. (2011). The economic and social effects of real exchange rate─ Evidence from the Chinese provinces. In International Conference on Social Cohesion and Development. http://www1.oecd.org/development/pgd/46838088.pdf
Ratnaningtyas, A. H., & Huda, S. (2023). The Influence of Interest Rates , Inflation , Exchange Rates and Exports on Indonesia’s Foreign Exchange Reserves. 3(6), 2039–2054. https://doi.org/10.55927/ijba.v3i6.5727
Ruslau, M. F. V., & Silubun, H. C. A. (2018). Analysis of Wind Speed Distribution at the Mopah Airport in Merauke. Atlantis Highlights in Engineering, 1(1), 958–963. https://doi.org/10.2991/icst-18.2018.193
Sudipa, I. G. I., Riana, R., Putra, I. N. T. A., Yanti, C. P., & Aristana, M. D. W. (2023). Trend Forecasting of the Top 3 Indonesian Bank Stocks Using the ARIMA Method. SinkrOn, 7(3), 1883–1893. https://doi.org/10.33395/sinkron.v8i3.12773
Sutikno, Kuswanto, H., & Ratih, I. D. (2014). Gaussian copula marginal regression for modeling extreme data with application. Journal of Mathematics and Statistics, 10(2), 192–200. https://doi.org/10.3844/jmssp.2014.192.200
U.S. Geogolical Survey. (2023). Mineral Comodity Summaries 2023. U.S. Geological Survey. https://doi.org/https://doi.org/10.3133/mcs2023.
Yakubu, U. A., & Saputra, M. P. A. (2022). Time Series Model Analysis Using Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) for E-wallet Transactions during a Pandemic. International Journal of Global Operations Research, 3(3), 80–85. https://doi.org/10.47194/ijgor.v3i3.168
DOI: https://doi.org/10.31764/jtam.v8i4.23089
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Kurniadi Rizki, Retno Budiarti, I Gusti Putu Purnaba
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: