Forecasting Beef Production with Comparison of Linear Regression and DMA Methods Based on n-th Ordo 3

Tundo Tundo, Mesra Betty Yel, Agung Yuliyanto Nugroho

Abstract


Beef is considered a high-value commodity because it is an important food source of protein. Interest in beef is increasing along with increasing people's incomes and awareness of the importance of fulfilling nutrition. Demand for beef is expected to continue to increase. According to the Central Statistics Agency (CSA), beef production in Jakarta shows an increasing trend every year. In the last 10 years, beef production has increased significantly, but in 2020 there was a decrease in production of 7,240.68 tons due to the lockdown due to the corona virus outbreak. After that, in 2021, production reached 16,381.81 tons and will continue to increase in 2022 and 2023. Based on the above phenomenon, the aim of this research is to support the success and sustainability of the beef industry by ensuring that supply matches demand, resources are used optimally, and risks can be managed well. To predict beef production, an accurate method, model or approach is needed. One way to predict beef production in Jakarta is to use the Linear Regression and Double Moving Average (DMA) methodsThe way the Linear Regression and DMA methods work is to forecast based on concepts and properties. The concepts and properties of Linear Regression are models, functions, estimates and forecasting results, while DMA performs time series analysis based on moving averages. After analysis using MAPE, it was found that the algorithm that had the smallest error value was the linear regression algorithm with a percentage for the monthly period of 15% while for the year period it was 17% compared to DMA. So in this case it would be very appropriate to use the Linear Regression method from the error values obtained.


Keywords


Forecasting; Beef; Production; Linear regression; Double Moving Average.

Full Text:

DOWNLOAD [PDF]

References


Abdallah, B. N., Wardani, F. S., Prabandewa, C. D., & Hertadi. (2024). Determination of Supply Strategy for Beef Price Stability in Balikpapan: Game Theory Approach. G-Tech : Jurnal Teknologi Terapan, 8(1), 26–35. Retrieved from https://ejournal.uniramalang.ac.id/index.php/g-tech/article/view/1823/1229

Agustiar, R., Triatmojo, A., & Guntoro, B. (2021). The study of local beef market structure in Jakarta, Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 888, pp. 1–5). https://doi.org/10.1088/1755-1315/888/1/012082

Alex, M. A. H., & Nur Rahmawati. (2023). Application of the Single Moving Average, Weighted Moving Average and Exponential Smoothing Methods For Forecasting Demand At Boy Delivery. Tibuana, 6(1), 32–37. https://doi.org/10.36456/tibuana.6.1.6442.32-37

Andrade-Arenas, L., Rubio-Paucar, I., & Yactayo-Arias, C. (2024). Data mining for predictive analysis in gynecology: a focus on cervical health. International Journal of Electrical and Computer Engineering, 14(3), 2822–2833. https://doi.org/10.11591/ijece.v14i3.pp2822-2833

Astiti, N. M. A. G. R., Wedaningsih, K. N., & Parwata, I. K. W. (2023). Potential demand and supply of beef cattle in Indonesia. Eximia, 11, 24–32. https://doi.org/10.47577/eximia.v11i1.274

Bhuyan, H., Kol, M., A. Adediran, D., Oluwaseyi Jessy, B., & Tundo, T. (2023). Predicting Uterine Fibroids with Multiple Classifiers: An Analysis. SciWaveBulletin, 01(02), 18–26. https://doi.org/10.61925/swb.2023.1203

Cazacu, M., & Titan, E. (2020). Adapting CRISP-DM for Social Sciences. BRAIN. Broad Research in Artificial Intelligence and Neuroscience, 11(2sup1), 99–106. https://doi.org/10.18662/brain/11.2sup1/97

Hasanah, A. (2023). Prediksi Produksi Padi di Kabupaten Sumenep Menggunakan Metode Single Exponential Smoothing. Jurnal Arjuna: Publikasi Ilmu Pendidikan, Bahasa Dan Matematika, 1(4), 264–272. Retrieved from https://doi.org/10.61132/arjuna.v1i4.136

Khairina, D. M., Khairunnisa, R., Hatta, H. R., & Maharani, S. (2021). Comparison of the trend moment and double moving average methods for forecasting the number of dengue hemorrhagic fever patients. Bulletin of Electrical Engineering and Informatics, 10(2), 978–987. https://doi.org/10.11591/eei.v10i2.2711

Kusuma, H. I., & Saputra, R. (2024). Analisis Peramalan Permintaan Jaket Inalcafa pada Produk Pria dengan Metode Double Moving Average. G-Tech: Jurnal Teknologi Terapan, 8(2), 1213–1219. https://doi.org/10.33379/gtech.v8i2.4222

Maulud, D., & Abdulazeez, A. M. (2020). A Review on Linear Regression Comprehensive in Machine Learning. Journal of Applied Science and Technology Trends, 1(2), 140–147. https://doi.org/10.38094/jastt1457

Mudatsir, R. M., Melangi, S., & Serwin. (2022). Prediksi Jumlah Produksi Ikan Asin Menggunakan Metode Regresi Linear Sederhana. JURNAL BALOK - Banthayo Lo Komputer, 1(2827–9425), 118–124.

Mustapa, R., Latief, M., & Rohandi, M. (2019). Double moving average method for predicting the number of patients with dengue fever in Gorontalo City. Sciences and Technology (GCSST), 2, 332–337. Retrieved from https://series.gci.or.id

Neisyafitri, R. J., & Ongkunaruk, P. (2022). The Use of Intervention Approach in Individual and Aggregate Forecasting Methods for Burger Patties: A Case in Indonesia. Agraris, 8(1), 20–33. https://doi.org/10.18196/agraris.v8i1.12842

Omari Firas. (2023). A combination of SEMMA & CRISP-DM models for effectively handling big data using formal concept analysis based knowledge discovery: A data mining approach. World Journal of Advanced Engineering Technology and Sciences, 8(1), 009–014. https://doi.org/10.30574/wjaets.2023.8.1.0147

Pranoto, G. T. (2022). Forecasting With Weighted Moving Average Method for Product Procurement Stock. Jurnal Sistem Informasi Dan Sains Teknologi, 4(2). https://doi.org/10.31326/sistek.v4i2.1268

Saifullah, S., Dreżewski, R., Dwiyanto, F. A., Aribowo, A. S., Fauziah, Y., & Cahyana, N. H. (2024). Automated Text Annotation Using a Semi-Supervised Approach with Meta Vectorizer and Machine Learning Algorithms for Hate Speech Detection. Applied Sciences, 14(3), 1078. https://doi.org/10.3390/app14031078

Saifullah, S., Suryotomo, A. P., Dreżewski, R., Tanone, R., & Tundo. (2023). Optimizing Brain Tumor Segmentation Through CNN U-Net with CLAHE-HE Image Enhancement. 1st International Conference on Advanced Informatics and Intelligent Information Systems (ICAI3S 2023). Atlantis Press International BV. https://doi.org/10.2991/978-94-6463-366-5

Sitompul, M., Hasan, M. A., & Devega, M. (2023). Forecasting Simcard Demand Using Linear Regression Method. IT Journal Research and Development, 8(1), 48–60. https://doi.org/10.25299/itjrd.2023.12202

Sutopo, J., Khanapi, M., Ghani, A., Burhanuddin, M. A., Septianti, A. N., & Tundo, T. (2023). Dance Gesture Recognition Using Laban Movement Analysis with J48 Classification. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 11(2), 528–536. https://doi.org/10.52549/ijeei.v11i2.4314

Syah, L. Y., Nafsiah, S. N., & Saddhono, K. (2019). Linear regression statistic from accounting information system application for Employee integrity. Journal of Physics: Conference Series, 1339(1). https://doi.org/10.1088/1742-6596/1339/1/012131

Theofani, G., & Sediyono, E. (2022). Multiple Linear Regression Analysis on Factors that Influence Employees Work Motivation. SinkrOn, 7(3), 791–798. https://doi.org/10.33395/sinkron.v7i3.11453

Tobing, D. N. L. (2022). Indihome Product Sales Forecasting with the Double Moving Average and Double Exponential Smoothing Methods on PT. Telkom Witel Sumut Pematang Siantar. Formosa Journal of Science and Technology, 1(8), 1201–1222. https://doi.org/10.55927/fjst.v1i8.2281

Tundo, T., & Mahardika, F. (2023). Fuzzy Inference System Tsukamoto – Decision Tree C 4 . 5 in Predicting the Amount of Roof Tile Production in Kebumen. JTAM (Jurnal Teori Dan Aplikasi Matematika), 7(2), 533–544.

Wahyudi, T., & Arroufu, D. S. (2022). Implementation of Data Mining Prediction Delivery Time Using Linear Regression Algorithm. Journal of Applied Engineering and Technological Science, 4(1), 84–92. https://doi.org/10.37385/jaets.v4i1.918

Wiemer, H., Drowatzky, L., & Ihlenfeldt, S. (2019). Data mining methodology for engineering applications (DMME)-A holistic extension to the CRISP-DM model. Applied Sciences (Switzerland), 9(12). https://doi.org/10.3390/app9122407

Yel, M. B., Tundo, T., & Arinal, V. (2024). Forecasting Roof Tiles Production with Comparison of SMA and DMA Methods Based on n-th Ordo 2 and 4. JTAM (Jurnal Teori Dan Aplikasi Matematika), 8(3), 667–679.

Zawad, N. M. (2023). Application of Data Mining in Healthcare of Bangladesh. IJISCS (International Journal of Information System and Computer Science), 7(2), 89. https://doi.org/10.56327/ijiscs.v7i2.1433




DOI: https://doi.org/10.31764/jtam.v8i4.24706

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Tundo, Mesra Betty Yel, Agung Yulianto Nugroho

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: