Identifying Poverty Vulnerability Patterns in Indonesia using Cheng and Chruch’s Algorithm

Irsyifa Mayzela Afnan, Hari Wijayanto, Aji Hamim Wigena

Abstract


Poverty remains a significant issue in developing countries, including Indonesia, where in 2022, the number of people living in poverty reached 26.36 million, with a poverty rate of 9.57%. The Central Statistics Agency (BPS) measures poverty using a basic needs approach, defined as the inability to meet essential food and non-food needs through expenditure. Individuals are considered poor if their average monthly per capita expenditure is below the poverty line. Research on poverty has evolved into a more multidimensional understanding, The Multidimensional Poverty Index (MPI), which identifies deprivation across three key dimensions: health, education, and living standards. This study aims to identify patterns of poverty vulnerability by applying the Cheng and Church (CC) algorithm through a biclustering approach using data from BPS. This quantitative method utilizes 13 multidimensional poverty indicators across 34 provinces. The CC algorithm begins by setting a threshold, followed by removing rows and columns with the largest residuals, adding qualifying rows and columns, and substituting elements to prevent overlap. The quality of the bicluster is then evaluated based on the Mean Squared Residue (MSR) value until optimal groups are formed. The results indicate that a threshold of 𝛿 = 0.01 generates seven biclusters with the lowest mean squared residual (0.0065), signifying optimal bicluster quality. Further validation using the Liu and Wang index reveals less than 50% similarity with other thresholds, reinforcing the uniqueness of these findings. MSR serves as a measure of homogeneity within the bicluster, similar to how uniform the level of poverty is within a region. If families have similar expenditures and are below the poverty line, they face similar challenges, resulting in a low MSR value. In contrast, the Liu and Wang index compares regions with different poverty alleviation strategies. These findings provide valuable insights for policymakers. For example, in bicluster 7, where specific interventions are needed in Papua and West Kalimantan, which face local challenges such as reliance on agriculture, low education levels, and limited access to sanitation and clean water.


Keywords


Biclustering; Cheng and Chruch; Poverty; MSR

Full Text:

DOWNLOAD [PDF]

References


Acharya, S., Saha, S., & Sahoo, P. (2019). Bi-clustering of microarray data using a symmetry-based multi-objective optimization framework. Soft Comput, 23(14), 5693–5714. https://doi.org/10.1007/s00500-018-3227-5

Baruah, B., Dutta, Manash P. Banerjee, S., & Bhattacharyya, D. K. (2024). EnsemBic: An effective ensemble of biclustering to identify potential biomarkers of esophageal squamous cell carcinoma. Computational Biology and Chemistry, 110, 108090. https://doi.org/10.1016/j.compbiolchem.2024.108090

Biswal, B. S., Mohapatra, A., & Vipsita, S. (2022). Ensemble Neighborhood Search (ENS) for biclustering of gene expression microarray data and single cell RNA sequencing data. Journal of King Saud University - Computer and Information Sciences, 34(5), 2244–2251. https://doi.org/10.1016/j.jksuci.2019.11.011

BPS. (2022). Data dan Informasi Kemiskinan Kabupaten/Kota di Indonesia Tahun 2022. Badan Pusat Statistik. https://ipb.link/datakemiskinan-periodemaret2022

Castanho, E. N., Aidos, H., & Madeira, S. C. (2022). Biclustering fMRI time series: a comparative study. BMC Bioinformatics, 23(1), 1–30. https://doi.org/10.1186/s12859-022-04733-8

Charfaoui, Y., Houari, A., & Boufera, F. (2024). AMoDeBic: An adaptive Multi-objective Differential Evolution biclustering algorithm of microarray data using a biclustering binary mutation operator. Expert Systems with Applications, 238(Part B). https://doi.org/10.1016/j.eswa.2023.121863

Gu, Z. (2022). Complex heatmap visualization. IMeta, 1(3), 1–15. https://doi.org/10.1002/imt2.43

Helgeson, E. S., Liu, Q., Chen, G., Kosorok, M. R., & Bair, E. (2020). Biclustering via sparse clustering. Biometrics, 76(1), 348–358. https://doi.org/10.1111/biom.13136

Henriques, R., Antunes, C., & Madeira, S. C. (2015). A structured view on pattern mining-based biclustering. Pattern Recognition, 48(12), 3941–3958. https://doi.org/10.1016/j.patcog.2015.06.018

Huang, Q., Chen, Y., Liu, L., Tao, D., & Li, X. (2020). On Combining Biclustering Mining and AdaBoost for Breast Tumor Classification. IEEE Transactions on Knowledge and Data Engineering, 32(4), 728–738. https://doi.org/10.1109/TKDE.2019.2891622

Kaban, P. A., Kurniawan, R., Caraka, R. E., Pardamean, B., Yuniarto, B., & Sukim. (2019). Biclustering method to capture the spatial pattern and to identify the causes of social vulnerability in Indonesia: A new recommendation for disaster mitigation policy. Procedia Computer Science, 157, 31–37. https://doi.org/10.1016/j.procs.2019.08.138

Kavitha Sri, N., & Porkodi, R. (2019). An extensive survey on biclustering approaches and algorithms for gene expression data. International Journal of Scientific and Technology Research, 8(9), 2228–2236. https://ipb.link/paper-kavithaetc

López-Fernández, A., Rodríguez-Baena, D. S., & Gómez-Vela, F. (2020). gMSR: A multi-GPU algorithm to accelerate a massive validation of biclusters. Electronics (Switzerland), 9(11), 1–15. https://doi.org/10.3390/electronics9111782

Maâtouk, O., Ayadi, W., Bouziri, H., & Duval, B. (2021). Evolutionary Local Search Algorithm for the biclustering of gene expression data based on biological knowledge. Applied Soft Computing, 104, 107177. https://doi.org/10.1016/j.asoc.2021.107177

Padilha, V. A., & Campello, R. J. G. B. (2017). A systematic comparative evaluation of biclustering techniques. BMC Bioinformatics, 18(1), 1–25. https://doi.org/10.1186/s12859-017-1487-1

Padilha, V. A., & Carvalho, A. C. P. de L. F. de. (2019). Experimental correlation analysis of bicluster coherence measures and gene ontology information. Applied Soft Computing Journal, 85(xxxx), 105688. https://doi.org/10.1016/j.asoc.2019.105688

Pang, C. (2022). Construction and Analysis of Macroeconomic Forecasting Model Based on Biclustering Algorithm. Journal of Mathematics, 2022(1), 1-10. https://doi.org/10.1155/2022/7768949

Pauk, J., & Minta-Bielecka, K. (2016). Gait patterns classification based on cluster and bicluster analysis. Biocybernetics and Biomedical Engineering, 36(2), 391–396. https://doi.org/10.1016/j.bbe.2016.03.002

Pontes, B., Giráldez, R., & Aguilar-Ruiz, J. S. (2015). Biclustering on expression data: A review. Journal of Biomedical Informatics, 57, 163–180. https://doi.org/10.1016/j.jbi.2015.06.028

Putri, C. A., Irfani, R., & Sartono, B. (2021). Recognizing poverty pattern in Central Java using Biclustering Analysis. Journal of Physics: Conference Series, 1863(1), 1-8. https://doi.org/10.1088/1742-6596/1863/1/012068

Silva, M. G., Madeira, S. C., & Henriques, R. (2022). Water Consumption Pattern Analysis Using Biclustering: When, Why and How. Water (Switzerland), 14(12), 1–35. https://doi.org/10.3390/w14121954

Sumertajaya, I. M. S., Ningsih, W. A. L., Saefuddin, A., & Rohaeti, E. (2023). Biclustering Performance Evaluation of Cheng and Church Algorithm and Iterative Signature Algorithm. JTAM (Jurnal Teori Dan Aplikasi Matematika), 7(3), 643. https://doi.org/10.31764/jtam.v7i3.14778

Wang, B., Miao, Y., Zhao, H., Jin, J., & Chen, Y. (2016). A biclustering-based method for market segmentation using customer pain points. Engineering Applications of Artificial Intelligence, 47, 101–109. https://doi.org/10.1016/j.engappai.2015.06.005

Xie, J., Ma, A., Fennell, A., Ma, Q., & Zhao, J. (2019). It is time to apply biclustering: A comprehensive review of biclustering applications in biological and biomedical data. Briefings in Bioinformatics, 20(4), 1449–1464. https://doi.org/10.1093/bib/bby014

Yuniarto, B., & Kurniawan, R. (2017). Understanding Structure of Poverty Dimensions in East Java: Bicluster Approach. Signifikan: Jurnal Ilmu Ekonomi, 6(2), 289–300. https://doi.org/10.15408/sjie.v6i2.4769

Zhang, J., & Shi, J. (2024). Nonparametric clustering of discrete probability distributions with generalized Shannon’s entropy and heatmap. Statistics & Probability Letters, 208. https://doi.org/10.1016/j.spl.2024.110070




DOI: https://doi.org/10.31764/jtam.v8i4.25790

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Irsyifa Mayzela Afnan, Hari Wijayanto, Aji Hamim Wigena

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: