Development of Ramsey RESET to Identify the Polynomials Order of Smoothing Spline with Simulation Study

Muhammad Rafi Hasan Nurdin, Adji Achmad Rinaldo Fernandes, Eni Sumarminingsih, Muhammad Ohid Ullah

Abstract


Path  analysis is used to determine the effect of exogenous variables on endogenous variables. One of the assumptions in path analysis is the linearity assumption. The linearity assumption can be tested using Ramsey RESET. If the Ramsey RESET results show that all variables are non-linear then one of the alternative models that can be used is nonparametric smoothing spline. The smoothing spline method requires a smoothing spline polynomial order in estimating the nonparametric path analysis function. This polynomial order results in the smoothing spline method having good flexibility in data adjustment. The selection of the smoothing spline polynomial order becomes an obstacle because there is no test to determine the best order. Therefore, the purpose of this study is to find out how the value of V for order 3 and 4, develop Ramsey RESET to identify the best spline polynomial order, and evaluate the Ramsey RESET algorithm through simulation studies on various errors. The results of V values of order 3 and 4 can be obtained through the integral process and it is found that the higher the order, the value of V has a higher rank. Ramsey RESET development is done by modifying the second regression using nonparametric regression functions of order 2, 3, and 4. The simulation study results show that the classical Ramsey RESET can be used to detect linear shapes well because it is not affected by the value of the error variance. However, the classical Ramsey RESET has limitations in detecting non-linear forms other than quadratic and cubic forms so that other forms such as smoothing spline are needed. In testing non-linear models, the lowest p value is obtained in the form that matches the actual conditions, this can be interpreted that the modified Ramsey RESET can detect non-linear forms with spline polynomial orders well. The contribution of this research is to provide a test to identify the best smoothing spline polynomial order using Ramsey RESET modification

Keywords


Nonparametric Path; Smoothing Spline; Polynomial Order; Simulation Study.

Full Text:

DOWNLOAD [PDF]

References


Gujarati. (2004). Basic Econometrics, Fourth Edition. In The Economic Journal (Vol. 82, Issue 326). https://doi.org/10.2307/2230043

Eubank, R. L. (1999). Nonparametric Regression and Smoothing Spline. CRC Press. https://doi.org/10.1201/9781482273144

Fernandes, A. A. R., Budiantara, I. N., Otok, B. W., & Suhartono. (2014). Spline estimator for bi-responses nonparametric regression model for longitudinal data. Applied Mathematical Sciences, 8,issue? 5653–5665. https://doi.org/10.12988/ams.2014.47566

Fernandes, A. A. R., Solimun, & Arisoesilaningsih, E. (2017). Estimation of spline function in nonparametric path analysis based on penalized weighted least square (PWLS). 020030. https://doi.org/10.1063/1.5016664

Hamid, M., Sufi, I., Konadi, W., & Yusrizal, A. (2019). Analisis Jalur Dan Aplikasi Spss Versi 25 Edisi Pertama. In Aceh. Kopelma Darussalam.

Lestari, B. (2018). Estimasi Fungsi Regresi Dalam Model Regresi Nonparametrik Birespon Menggunakan Estimator Smoothing Spline dan Estimator Kernel. Jurnal Matematika Statistika Dan Komputasi, 15(2), 20. https://doi.org/10.20956/jmsk.v15i2.5710

Pratama, Y. M., Fernandes, A. A. R., Wardhani, N. W. S., & Hamdan, R. (2024). Nonparametric Smoothing Spline Approach in Examining Investor Interest Factors. JTAM (Jurnal Teori Dan Aplikasi Matematika), 8(2), 425. https://doi.org/10.31764/jtam.v8i2.20192

Purnama, D. I. (2020). A Comparison between Nonparametric Approach: Smoothing Spline and B-Spline to Analyze The Total of Train Passangers in Sumatra Island. EKSAKTA: Journal of Sciences and Data Analysis, 1(1), 73–80. https://doi.org/10.20885/eksakta.vol1.iss1.art11

Ramsey, J. B. (1969). Tests for Specification Errors in Classical Linear Least-Squares Regression Analysis. Journal of the Royal Statistical Society Series B: Statistical Methodology, 31(2), 350–371. https://doi.org/10.1111/j.2517-6161.1969.tb00796.x

Fernandes, A. A. R., Hutahayan, B., Solimun, Arisoesilaningsih, E., Yanti, I., Astuti, A. B., Nurjannah, & Amaliana, L. (2019). Comparison of Curve Estimation of the Smoothing Spline Nonparametric Function Path Based on PLS and PWLS In Various Levels of Heteroscedasticity. IOP Conference Series: Materials Science and Engineering, 546(5), 052024. https://doi.org/10.1088/1757-899X/546/5/052024

Rosadi, S., Rinaldi, A., & Gunawan, W. (2022). Implementasi Metode Regresi Nonparametrik Spline untuk Menganalisis Keuntungan Produksi Batu-Bata. Jurnal Ilmiah Matematika Dan Terapan, 19(2), 215–226. https://doi.org/10.22487/2540766x.2022.v19.i2.16150

Salam, N., Sukmawaty, Y., & Halida, A. (2022). Estimasi Model Regresi Nonparametrik Dengan Metode B-Spline. Jurnal Sistem Media Bina Ilmiah, 16(10), 7631–7638.

Sandjojo, N. (2011). Metode Analisis Jalur (Path Analysis) dan Aplikasinya. Pustaka Sinar Harapan.

Sayuti, A., Kusnandar, D., & Mara, M. N. (2013). Generalized Cross Validation Dalam Regresi Smoothing Spline. Buletin Ilmiah Mat. Stat. Dan Terapannya (Bimaster), 02(3), 191–196. https://jurnal.untan.ac.id/index.php/jbmstr/article/view/3862/3869

Solimun, & Fernandes, A. A. R. (2023). Innovation-Based Research Using Structural Flexibility and Acceptance Model (SFAM). Cogent Business and Management, 10(1). Page?https://doi.org/10.1080/23311975.2022.2128255

Solimun., Fernandes, A. A. R., & Nurjannah. (2017). Metode Statistika Multivariat Pemodelan Persamaan Struktural (SEM) Pendekatan WarpPLS. UB Press.

Takezawa, K. (2005). Introduction to Nonparametric Regression. Wiley. https://doi.org/10.1002/0471771457

Wahyuningsih, T. D., Handajani, S. S., & Indriati, D. (2019). Penerapan Generalized Cross Validation dalam Model Regresi Smoothing Spline pada Produksi Ubi Jalar di Jawa Tengah. Indonesian Journal of Applied Statistics, 1(2), 117. https://doi.org/10.13057/ijas.v1i2.26250

Zebua, H. I. (2021). Pemodelan Kemiskinan di Sumatera Utara Menggunakan Regresi Nonparametrik Kernel dan Splines. Seminar Nasional Official Statistics, 2021(1), 899–907. https://doi.org/10.34123/semnasoffstat.v2021i1.1087




DOI: https://doi.org/10.31764/jtam.v9i1.26785

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Muhammad Rafi Hasan Nurdin, Adji Achmad Rinaldo Fernandes, Eni Sumarminingsih, Muhammad Ohid Ullah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: