The GSTAR (1;1) Modelling with Three Combination of the Grid Sizes and Spatial Weight Matrix in Forest Fires Cases

Muhammad Yahya Ayyash, Nur'ainul Miftahul Huda, Nurfitri Imro'ah

Abstract


One of the models that is utilized in spatio-temporal analysis is known as the Generalized Space-Time Autoregressive (GSTAR). This model incorporates two dimensions, namely the geographical and temporal aspects of the situation. This approach assists in the identification of patterns and correlations between data by taking into account both spatial and temporal elements. From modeling the confidence level of forest fire hotspot cases in Kubu Raya and its surrounds using the GSTAR (1;1) model with three different combinations of grids and special weight matrices, the purpose of this study is to discover which combination of grids and spatial weight matrices is the most effective. The results of diagnostic tests and the degrees of MAPE accuracy are used to determine which model is the most suitable. The data was obtained from the FIRMS-NASA platform, ranging from January 2014 to August 2024. A grid with a dimension of 1.25 x 1.25 degrees and a rook contiguity weight matrix is a combination of grids and spatial weight matrices that meet the white noise assumption, according to the findings of the study. This conclusion is based on the diagnostic test. As a result, the combination of a grid with a size of 1.25 x 1.25 and a rook contiguity weight matrix is the best in this modeling. This combination has a MAPE of 11.797%, which indicates that this model has a good level of accuracy.

 


Keywords


Spatial-temporal; GSTAR; Grid; Weight matrix.

Full Text:

DOWNLOAD [PDF]

References


Arifa, N. M. (2022). Kebakaran Hutan Kalimantan Barat Yang Mengakibatkan Terjadinya Kabut Asap Ekstrem Di Daerah Pontianak. https://doi.org/10.31219/osf.io/4dqzy

Bill, R., Blankenbach, J., Breunig, M., Haunert, J.-H., Heipke, C., Herle, S., Maas, H.-G., Mayer, H., Meng, L., Rottensteiner, F., Schiewe, J., Sester, M., Sörgel, U., & Werner, M. (2022). Geospatial Information Research: State of the Art, Case Studies and Future Perspectives. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 90(4), 349–389. https://doi.org/10.1007/s41064-022-00217-9

Dastour, H., Ahmed, M. R., & Hassan, Q. K. (2024). Analysis of forest fire patterns and their relationship with climate variables in Alberta’s natural subregions. Ecological Informatics, 80, 102531. https://doi.org/10.1016/j.ecoinf.2024.102531

Franch-Pardo, I., Napoletano, B. M., Rosete-Verges, F., & Billa, L. (2020). Spatial analysis and GIS in the study of COVID-19. A review. Science of The Total Environment, 739, 140033. https://doi.org/10.1016/j.scitotenv.2020.140033

Hestuningtias, F., & Kurniawan, M. H. S. (2023). The Implementation of the Generalized Space-Time Autoregressive (GSTAR) Model for Inflation Prediction. Enthusiastic : International Journal of Applied Statistics and Data Science, 176–188. https://doi.org/10.20885/enthusiastic.vol3.iss2.art5

Huda, N. M., Fran, F., Yundari, Y., Fikadila, L., & Safitri, F. (2023). Modified Weight Matrix Using Prim’s Algorithm In Minimum Spanning Tree (MST) Aproach For GSTAR(1;1) Model. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(1), 0263–0274. https://doi.org/10.30598/barekengvol17iss1pp0263-0274

Huda, N. M., & Imro’ah, N. (2023). Determination of the best weight matrix for the Generalized Space Time Autoregressive (GSTAR) model in the Covid-19 case on Java Island, Indonesia. Spatial Statistics, 54, 100734. https://doi.org/10.1016/j.spasta.2023.100734

Huda, N. M., Mukhaiyar, U., & Imro’ah, N. (2022). An Iterative Procedure For Outlier Detection In GSTAR(1;1) Model. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 16(3), 975–984. https://doi.org/10.30598/barekengvol16iss3pp975-984

Huda, N. M., Mukhaiyar, U., & Pasaribu, U. S. (2021). The approximation of GSTAR model for discrete cases through INAR model. Journal of Physics: Conference Series, 1722(1), 012100. https://doi.org/10.1088/1742-6596/1722/1/012100

Ilmi, N., Aswi, A., & Aidid, M. K. (2023). Generalized Space Time Autoregressive Integrated Moving Average (GSTARIMA) dalam Peramalan Data Curah Hujan di Kota Makassar. Inferensi, 6(1), 25. https://doi.org/10.12962/j27213862.v6i1.14347

Lam, C., & Souza, P. C. L. (2019). Estimation and Selection of Spatial Weight Matrix in a Spatial Lag Model. Journal of Business & Economic Statistics, 38(3), 693–710. https://doi.org/10.1080/07350015.2019.1569526

Lu, X., Salehi, M., Haenggi, M., Hossain, E., & Jiang, H. (2021). Stochastic Geometry Analysis of Spatial-Temporal Performance in Wireless Networks: A Tutorial. IEEE Communications Surveys & Tutorials, 23(4), 2753–2801. https://doi.org/10.1109/COMST.2021.3104581

Mukhaiyar, U., Huda, N. M., Novita Sari, R. K., & Pasaribu, U. S. (2019). Modeling Dengue Fever Cases by Using GSTAR(1;1) Model with Outlier Factor. Journal of Physics: Conference Series, 1366(1), 012122. https://doi.org/10.1088/1742-6596/1366/1/012122

Pasaribu, U. S., Mukhaiyar, U., Huda, N. M., Sari, K. N., & Indratno, S. W. (2021). Modelling COVID-19 growth cases of provinces in java Island by modified spatial weight matrix GSTAR through railroad passenger’s mobility. Heliyon, 7(2), e06025. https://doi.org/10.1016/j.heliyon.2021.e06025

Rachman, A., Saharjo, B. H., & Putri, E. I. K. (2020). Forest and Land Fire Prevention Strategies in the Forest Management Unit Kubu Raya, South Ketapang, and North Ketapang in West Kalimantan Province. Jurnal Ilmu Pertanian Indonesia, 25(2), 213–223. https://doi.org/10.18343/jipi.25.2.213

Ramsdale, J. D., Balme, M. R., Conway, S. J., Gallagher, C., van Gasselt, S. A., Hauber, E., Orgel, C., Séjourné, A., Skinner, J. A., Costard, F., Johnsson, A., Losiak, A., Reiss, D., Swirad, Z. M., Kereszturi, A., Smith, I. B., & Platz, T. (2017). Grid-based mapping: A method for rapidly determining the spatial distributions of small features over very large areas. Planetary and Space Science, 140, 49–61. https://doi.org/10.1016/j.pss.2017.04.002

Ruchjana, B. N., Borovkova, S. A., & Lopuhaa, H. P. (2012). Least squares estimation of Generalized Space Time AutoRegressive (GSTAR) model and its properties. 61–64. https://doi.org/10.1063/1.4724118

Ryerson, M., Davidson, J., Wu, J. S., Feiglin, I., & Winston, F. (2022). Identifying community-level disparities in access to driver education and training: Toward a definition of driver training deserts. Traffic Injury Prevention, 23(sup1). https://doi.org/10.1080/15389588.2022.2125305

Suryowati, K. S., Nahak, M., & Bekti, R. D. (2023). Penerapan Model Spasial Menggunakan Matriks Pembobot Queen Contiguity dan Euclidean Distance Terhadap Kasus Gizi Buruk Balita di Provinsi Nusa Tenggara Timur. J Statistika: Jurnal Ilmiah Teori Dan Aplikasi Statistika, 16(1), 298–308. https://doi.org/10.36456/jstat.vol16.no1.a7871

Ware, C., Mayer, L., Johnson, P., Jakobsson, M., & Ferrini, V. (2020). A global geographic grid system for visualizing bathymetry. Geoscientific Instrumentation, Methods and Data Systems, 9(2), 375–384. https://doi.org/10.5194/gi-9-375-2020

Wu, Z., Wang, B., Li, M., Tian, Y., Quan, Y., & Liu, J. (2022). Simulation of forest fire spread based on artificial intelligence. Ecological Indicators, 136, 108653. https://doi.org/10.1016/j.ecolind.2022.108653

Yundari, Pasaribu, U. S., Mukhaiyar, U., & Heriawan, M. N. (2018). Spatial Weight Determination of GSTAR(1;1) Model by Using Kernel Function. Journal of Physics: Conference Series, 1028, 012223. https://doi.org/10.1088/1742-6596/1028/1/012223

Zhao, L., Sen Gupta, S., Khan, A., & Luo, R. (2021). Temporal Analysis of the Entire Ethereum Blockchain Network. Proceedings of the Web Conference 2021, 2258–2269. https://doi.org/10.1145/3442381.3449916

Zhu, P., Li, J., & Hou, Y. (2022). Applying a Population Flow–Based Spatial Weight Matrix in Spatial Econometric Models: Conceptual Framework and Application to COVID-19 Transmission Analysis. Annals of the American Association of Geographers, 112(8), 2266–2286. https://doi.org/10.1080/24694452.2022.2060791




DOI: https://doi.org/10.31764/jtam.v9i1.27543

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Muhammad Yahya Ayyash, Nur’ainul Miftahul Huda, Nurfitri Imro’ah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: