The GSTAR (1;1) Modelling with Three Combination of the Grid Sizes and Spatial Weight Matrix in Forest Fires Cases
Abstract
One of the models that is utilized in spatio-temporal analysis is known as the Generalized Space-Time Autoregressive (GSTAR). This model incorporates two dimensions, namely the geographical and temporal aspects of the situation. This approach assists in the identification of patterns and correlations between data by taking into account both spatial and temporal elements. From modeling the confidence level of forest fire hotspot cases in Kubu Raya and its surrounds using the GSTAR (1;1) model with three different combinations of grids and special weight matrices, the purpose of this study is to discover which combination of grids and spatial weight matrices is the most effective. The results of diagnostic tests and the degrees of MAPE accuracy are used to determine which model is the most suitable. The data was obtained from the FIRMS-NASA platform, ranging from January 2014 to August 2024. A grid with a dimension of 1.25 x 1.25 degrees and a rook contiguity weight matrix is a combination of grids and spatial weight matrices that meet the white noise assumption, according to the findings of the study. This conclusion is based on the diagnostic test. As a result, the combination of a grid with a size of 1.25 x 1.25 and a rook contiguity weight matrix is the best in this modeling. This combination has a MAPE of 11.797%, which indicates that this model has a good level of accuracy.
Keywords
Full Text:
DOWNLOAD [PDF]References
Arifa, N. M. (2022). Kebakaran Hutan Kalimantan Barat Yang Mengakibatkan Terjadinya Kabut Asap Ekstrem Di Daerah Pontianak. https://doi.org/10.31219/osf.io/4dqzy
Bill, R., Blankenbach, J., Breunig, M., Haunert, J.-H., Heipke, C., Herle, S., Maas, H.-G., Mayer, H., Meng, L., Rottensteiner, F., Schiewe, J., Sester, M., Sörgel, U., & Werner, M. (2022). Geospatial Information Research: State of the Art, Case Studies and Future Perspectives. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 90(4), 349–389. https://doi.org/10.1007/s41064-022-00217-9
Dastour, H., Ahmed, M. R., & Hassan, Q. K. (2024). Analysis of forest fire patterns and their relationship with climate variables in Alberta’s natural subregions. Ecological Informatics, 80, 102531. https://doi.org/10.1016/j.ecoinf.2024.102531
Franch-Pardo, I., Napoletano, B. M., Rosete-Verges, F., & Billa, L. (2020). Spatial analysis and GIS in the study of COVID-19. A review. Science of The Total Environment, 739, 140033. https://doi.org/10.1016/j.scitotenv.2020.140033
Hestuningtias, F., & Kurniawan, M. H. S. (2023). The Implementation of the Generalized Space-Time Autoregressive (GSTAR) Model for Inflation Prediction. Enthusiastic : International Journal of Applied Statistics and Data Science, 176–188. https://doi.org/10.20885/enthusiastic.vol3.iss2.art5
Huda, N. M., Fran, F., Yundari, Y., Fikadila, L., & Safitri, F. (2023). Modified Weight Matrix Using Prim’s Algorithm In Minimum Spanning Tree (MST) Aproach For GSTAR(1;1) Model. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(1), 0263–0274. https://doi.org/10.30598/barekengvol17iss1pp0263-0274
Huda, N. M., & Imro’ah, N. (2023). Determination of the best weight matrix for the Generalized Space Time Autoregressive (GSTAR) model in the Covid-19 case on Java Island, Indonesia. Spatial Statistics, 54, 100734. https://doi.org/10.1016/j.spasta.2023.100734
Huda, N. M., Mukhaiyar, U., & Imro’ah, N. (2022). An Iterative Procedure For Outlier Detection In GSTAR(1;1) Model. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 16(3), 975–984. https://doi.org/10.30598/barekengvol16iss3pp975-984
Huda, N. M., Mukhaiyar, U., & Pasaribu, U. S. (2021). The approximation of GSTAR model for discrete cases through INAR model. Journal of Physics: Conference Series, 1722(1), 012100. https://doi.org/10.1088/1742-6596/1722/1/012100
Ilmi, N., Aswi, A., & Aidid, M. K. (2023). Generalized Space Time Autoregressive Integrated Moving Average (GSTARIMA) dalam Peramalan Data Curah Hujan di Kota Makassar. Inferensi, 6(1), 25. https://doi.org/10.12962/j27213862.v6i1.14347
Lam, C., & Souza, P. C. L. (2019). Estimation and Selection of Spatial Weight Matrix in a Spatial Lag Model. Journal of Business & Economic Statistics, 38(3), 693–710. https://doi.org/10.1080/07350015.2019.1569526
Lu, X., Salehi, M., Haenggi, M., Hossain, E., & Jiang, H. (2021). Stochastic Geometry Analysis of Spatial-Temporal Performance in Wireless Networks: A Tutorial. IEEE Communications Surveys & Tutorials, 23(4), 2753–2801. https://doi.org/10.1109/COMST.2021.3104581
Mukhaiyar, U., Huda, N. M., Novita Sari, R. K., & Pasaribu, U. S. (2019). Modeling Dengue Fever Cases by Using GSTAR(1;1) Model with Outlier Factor. Journal of Physics: Conference Series, 1366(1), 012122. https://doi.org/10.1088/1742-6596/1366/1/012122
Pasaribu, U. S., Mukhaiyar, U., Huda, N. M., Sari, K. N., & Indratno, S. W. (2021). Modelling COVID-19 growth cases of provinces in java Island by modified spatial weight matrix GSTAR through railroad passenger’s mobility. Heliyon, 7(2), e06025. https://doi.org/10.1016/j.heliyon.2021.e06025
Rachman, A., Saharjo, B. H., & Putri, E. I. K. (2020). Forest and Land Fire Prevention Strategies in the Forest Management Unit Kubu Raya, South Ketapang, and North Ketapang in West Kalimantan Province. Jurnal Ilmu Pertanian Indonesia, 25(2), 213–223. https://doi.org/10.18343/jipi.25.2.213
Ramsdale, J. D., Balme, M. R., Conway, S. J., Gallagher, C., van Gasselt, S. A., Hauber, E., Orgel, C., Séjourné, A., Skinner, J. A., Costard, F., Johnsson, A., Losiak, A., Reiss, D., Swirad, Z. M., Kereszturi, A., Smith, I. B., & Platz, T. (2017). Grid-based mapping: A method for rapidly determining the spatial distributions of small features over very large areas. Planetary and Space Science, 140, 49–61. https://doi.org/10.1016/j.pss.2017.04.002
Ruchjana, B. N., Borovkova, S. A., & Lopuhaa, H. P. (2012). Least squares estimation of Generalized Space Time AutoRegressive (GSTAR) model and its properties. 61–64. https://doi.org/10.1063/1.4724118
Ryerson, M., Davidson, J., Wu, J. S., Feiglin, I., & Winston, F. (2022). Identifying community-level disparities in access to driver education and training: Toward a definition of driver training deserts. Traffic Injury Prevention, 23(sup1). https://doi.org/10.1080/15389588.2022.2125305
Suryowati, K. S., Nahak, M., & Bekti, R. D. (2023). Penerapan Model Spasial Menggunakan Matriks Pembobot Queen Contiguity dan Euclidean Distance Terhadap Kasus Gizi Buruk Balita di Provinsi Nusa Tenggara Timur. J Statistika: Jurnal Ilmiah Teori Dan Aplikasi Statistika, 16(1), 298–308. https://doi.org/10.36456/jstat.vol16.no1.a7871
Ware, C., Mayer, L., Johnson, P., Jakobsson, M., & Ferrini, V. (2020). A global geographic grid system for visualizing bathymetry. Geoscientific Instrumentation, Methods and Data Systems, 9(2), 375–384. https://doi.org/10.5194/gi-9-375-2020
Wu, Z., Wang, B., Li, M., Tian, Y., Quan, Y., & Liu, J. (2022). Simulation of forest fire spread based on artificial intelligence. Ecological Indicators, 136, 108653. https://doi.org/10.1016/j.ecolind.2022.108653
Yundari, Pasaribu, U. S., Mukhaiyar, U., & Heriawan, M. N. (2018). Spatial Weight Determination of GSTAR(1;1) Model by Using Kernel Function. Journal of Physics: Conference Series, 1028, 012223. https://doi.org/10.1088/1742-6596/1028/1/012223
Zhao, L., Sen Gupta, S., Khan, A., & Luo, R. (2021). Temporal Analysis of the Entire Ethereum Blockchain Network. Proceedings of the Web Conference 2021, 2258–2269. https://doi.org/10.1145/3442381.3449916
Zhu, P., Li, J., & Hou, Y. (2022). Applying a Population Flow–Based Spatial Weight Matrix in Spatial Econometric Models: Conceptual Framework and Application to COVID-19 Transmission Analysis. Annals of the American Association of Geographers, 112(8), 2266–2286. https://doi.org/10.1080/24694452.2022.2060791
DOI: https://doi.org/10.31764/jtam.v9i1.27543
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Muhammad Yahya Ayyash, Nur’ainul Miftahul Huda, Nurfitri Imro’ah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: