Determinants of Tridiagonal and Circulant Matrices Special Form by Chebyshev Polynomials

Nurliantika Nurliantika, Fransiskus Fran, Yundari Yundari

Abstract


Along with the development of science, many researchers have found new methods to determine the determinant of a matrix of more than three orders. Chebyshev polynomial can be used to find and develop a more efficient formula in calculating the determinant of matrices. This research explores the Chebyshev polynomials of the first kind T_n (x) and second kind U_n (x). Both types of Chebyshev polynomials, T_n (x) and U_n (x), can be represented using recurrence relations. This research aims to determine the determinant of tridiagonal and circulant matrices of special form using Chebyshev polynomials T_n (x) and U_n (x). Determining the determinant of a matrix is a fundamental problem in linear algebra that plays an important role in both theoretical and applied mathematics. Its theoretical contributions include a deeper understanding of matrix properties, the development of efficient computational methods, and the explanation of the relationship between matrices and orthogonal polynomials. By utilizing Chebyshev polynomials, this study strengthens determinant theory, particularly for matrices with special shapes. The steps to determine the determinant of tridiagonal and circulant matrices involve the application of elementary row operations. The first step is to perform row operations on the tridiagonal and circulant matrices to obtain a matrix form that conforms to the determinant theorem of the tridiagonal and circulant matrices. After the elementary row operation is applied, if the form of the tridiagonal and circulant matrices each satisfies the form in the determinant theorem of the tridiagonal and circulant matrices, then the determinant of the matrices can be calculated using each of the theorems that satisfy. Then the determinants of the tridiagonal and the circulant matrices are obtained. The results of this study show that the determinant of tridiagonal and circulant matrices of special form can be determined using Chebyshev polynomials T_n (x) and U_n (x).


Keywords


Chebyshev Polynomial of the First Kind (T_n (x)); Chebyshev Polynomial of the Second Kind (U_n (x)); Recurrence Relation.

Full Text:

DOWNLOAD [PDF]

References


Anton, H., & Rorres, C. (2013). Elementary Linear Algebra Aplications Version (J. Wiley & Sons, Eds.; 11th ed.), 25-126.

Baigonakova, G. A., & Mednykh, I. A. (2018). Counting spanning trees in cobordism of two circulant graphs. Siberian Electronic Mathematical Reports, Vol. 15, 1145–1157. https://doi.org/10.17377/semi.2018.15.093

Belbachir, H., & Bencherif, F. (2008). On Some Properties of Chebyshev Polunomials. In Discussiones Mathematicae General Algebra and Applications, Vol. 28, 21(1), 121-133. https://doi.org/10.7151/dmgaa.1138

Bucur, A., Alvarez-Ballesteros, S., & López-Bonilla, J. L. (2007). On the charateristic equation of Chebyshev matrices. In General Mathematics, 15 (4), 17-23.

da Fonseca, C. M. (2020). On the connection between tridiagonal matrices, Chebyshev polynomials, and Fibonacci numbers. Acta Universitatis Sapientiae, Mathematica, 12(2), 280–286. https://doi.org/10.2478/ausm-2020-0019

Daoud, S. N. (2012). Chebyshev Polynomials and Spanning Tree Formulas. Vol. 4, 68–79.

Daoud, S. N. (2019). Number of Spanning Trees of Cartesian and Composition Products of Graphs and Chebyshev Polynomials. IEEE Access, Vol. 7, 71142–71157. https://doi.org/10.1109/ACCESS.2019.2917535

Du, Z., Fonseca, C. M. da, & Pereira, A. (2021). On determinantal recurrence relations of banded matrices. Kuwait Journal of Science, 49(1). 1-9. https://doi.org/10.48129/kjs.v49i1.11165

Elouafi, M. (2014). On a relationship between Chebyshev polynomials and Toeplitz determinants. Applied Mathematics and Computation, 229, 27–33. https://doi.org/10.1016/j.amc.2013.12.029

Fahlevi, M. R. (2021). Determinan Matriks Sirkulan Dengan Metode Kondensasi Dodgson. Jurnal Ilmiah Matematika dan Terapan, 18(2), 211–220. https://doi.org/10.22487/2540766x.2021.v18.i2.15497

Fitriyani, E., Wulan Ramadhani, E., & Helmi. (2018). Metode Alternatif Dalam Menentukan Determinan Matriks n×n. In Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster), 7(4), 335-342. http://doi.org/10.26418/bbimst.v7i4.28615

Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of Integrals, Series, and Products Seventh Edition. https://doi.org/10.1016/C2010-0-64839-5

Hetmaniok, E., Lota, D. S., Szweda, M., Trawi, T., & Wituu, R. LA. (n.d. 2017). Determinants of the block arrowhead matrices. Selected Problems on Experimental Mathematics, 73-88.

Ilhamsyah, Frans, F., & Helmi. (2017). Determinan dan Invers Matriks Blok 2× 2. 6(3), 193-202. https://doi.org/10.26418/bbimst.v6i03.21860

Jakovčević Stor, N., & Slapničar, I. (2024). Inverses and Determinants of Arrowhead and Diagonal-Plus-Rank-One Matrices over Associative Algebras. Axioms, 13(6), 409. https://doi.org/10.3390/axioms13060409

Janji´c, M. J. (2012). Determinants and Recurrence Sequences. In Journal of Integer Sequences, Vol. 15, 1-21. https://doi.org/10.48550/arXiv.1112.2466

Jiang, Z., Shen, N., & Li, J. (2013). The Spectral Decomposition of Some Tridiagonal Matrices. 12(12), 1135-1145.

Jitman, S. (2020). Determinants of some special matrices over commutative finite chain rings. Special Matrices, 8(1), 242–256. https://doi.org/10.1515/spma-2020-0118

Jitman, S., & Sricharoen, Y. (2024). Determinants of tridiagonal matrices over some commutative finite chain rings. Special Matrices, 12(1), 1-21. https://doi.org/10.1515/spma-2023-0114

Kartika, H. (2017). Aljabar Matriks: Teori dan Aplikasinya dengan Scilab (Deepublish, Ed.).

Mason, J. C. ., & Handscomb, D. C. . (2003). Chebyshev polynomials. Chapman & Hall/CRC. https://doi.org/10.1201/9781420036114

Olson, B. J., Shaw, S. W., Shi, C., Pierre, C., & Parker, R. G. (2014). Circulant Matrices and Their Application to Vibration Analysis. Applied Mechanics Reviews, 66(4), 1-42. https://doi.org/10.1115/1.4027722

Qi, F., Wen, W., Dongkyu, L., Guo, B.-N., Wang, W., & Lim, D. (2019). Some formulas for determinants of tridiagonal matrices in terms of finite generalized continued fractions, 523, 1-15. https://hal.science/hal-02372394v1

Rosen, K. H. (2012). Discrete mathematics and its applications. McGraw-Hill. http://dx.doi.org/10.1093/teamat/hrq007

Seibert, J., & Trojovský, P. (2006). Circulants and the factorization of the Fibonacci-like numbers. In Acta Mathematica Universitatis Ostraviensis, 14(1), 63-70. http://dml.cz/dmlcz/137485

Zeen El Deen, M. R., & Aboamer, W. A. (2021). Complexity of Some Duplicating Networks. IEEE Access, 9, 56736–56756. https://doi.org/10.1109/ACCESS.2021.3059048

Zhang, D. (2017). Tridiagonal Random Matrix: Gaussian Fluctuations and Deviations. Journal of Theoretical Probability, 30(3), 1076–1103. https://doi.org/10.1007/s10959-016-0683-7

Zhang, Y., Yong, X., & Golin, M. J. (2005). Chebyshev polynomials and spanning tree formulas for circulant and related graphs. Discrete Mathematics, 298(1–3), 334–364. https://doi.org/10.1016/j.disc.2004.10.025




DOI: https://doi.org/10.31764/jtam.v9i1.27871

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Nurliantika, Fransiskus Fran, Yundari

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: