Naïve Bayes Algorithm: Analysis of Student Group Assignment Project Patterns in Mathematics Learning

Wardhani Utami Dewi, Ira Vahlia, Nego Linuhung

Abstract


Effective collaboration in mathematics learning is essential for developing students' critical thinking and problem-solving skills; however, identifying patterns that lead to successful group collaboration remains challenging. This study aims explicitly to identify and classify the patterns of student group assignment completion in the Logic and Sets course using the Naïve Bayes algorithm. Survey data from 65 mathematics education students were analyzed using a quantitative approach and machine learning techniques. Attributes such as group size, task completion time, participation, contribution strategies, and communication effectiveness were collected via structured questionnaires. Data analysis involved preprocessing, model training using Naïve Bayes, and validation through accuracy and posterior probability analysis. Results indicated that the Naïve Bayes model accurately distinguished groups with very good (A) and fairly good (B) performance, achieving 84.62% accuracy. Groups achieving an A grade typically featured balanced participation and open communication strategies, whereas groups graded B exhibited uneven participation and passive members. This research significantly contributes by demonstrating how data-driven predictive analytics can support instructors in monitoring and enhancing collaborative learning processes in mathematics courses. Future research could further refine predictive accuracy by incorporating additional factors such as leadership style and collaborative technologies, potentially integrating the model into learning management systems for real-time evaluation and intervention.


Keywords


Assignment; classification; Student collaboration; Naïve bayes; Project.

Full Text:

DOWNLOAD [PDF]

References


Afdhaluzzikri, A., Mawengkang, H., & Sitompul, O. S. (2022). Perfomance analysis of Naive Bayes method with data weighting. Sinkron: Jurnal Dan Penelitian Teknik Informatika, 6(3), 817–821. https://doi.org/10.33395/sinkron.v7i3.11516

Ahmed, A., Nipa, F. A., Bhuyian, W. U., Mushfique, K. M., Shahin, K. I., Nguyen, H.-H., & Farid, D. M. (2024). Students’ performance prediction employing Decision Tree. CTU Journal of Innovation and Sustainable Development, 16(Special issue: ISDS), 42–51. https://doi.org/10.22144/ctujoisd.2024.321

Albreiki, B., Habuza, T., & Zaki, N. (2022). Framework for automatically suggesting remedial actions to help students at risk based on explainable ML and rule-based models. International Journal of Educational Technology in Higher Education, 19(1), 49. https://doi.org/10.1186/s41239-022-00354-6

An, Q., Rahman, S., Zhou, J., & Kang, J. J. (2023). A comprehensive review on machine learning in healthcare industry: classification, restrictions, opportunities and challenges. Sensors, 23(9), 4178. https://doi.org/10.3390/s23094178

Bahtiar, S. A. H., Dewa, C. K., & Luthfi, A. (2023). Comparison of Naïve Bayes and Logistic Regression in Sentiment Analysis on Marketplace Reviews Using Rating-Based Labeling. Journal of Information Systems and Informatics, 5(3), 915–927. https://doi.org/10.51519/journalisi.v5i3.539

Bisht, K., & Kumar, A. (2023). A method for fuzzy time series forecasting based on interval index number and membership value using fuzzy c-means clustering. Evolutionary Intelligence, 16(1), 285–297. https://doi.org/10.1007/s12065-021-00656-0

Chicco, D., Tötsch, N., & Jurman, G. (2021). The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData Mining, 14(13), 1–22. https://doi.org/10.1186/s13040-021-00244-z

Choi, Y., Farnadi, G., Babaki, B., & Van den Broeck, G. (2020). Learning fair naive bayes classifiers by discovering and eliminating discrimination patterns. Proceedings of the AAAI Conference on Artificial Intelligence, 34(06), 10077–10084. https://doi.org/10.1609/aaai.v34i06.6565

Dewi, C., Chen, R.-C., Christanto, H. J., & Cauteruccio, F. (2023). Multinomial Naïve Bayes classifier for sentiment analysis of internet movie database. Vietnam Journal of Computer Science, 10(04), 485–498. https://doi.org/10.1142/S2196888823500100

Dewi, W. U., Nisa, K., & Usman, M. (2023). Implementation Of Decision Tree And Support Vector Machine On Raisin Seed Classification. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 12(1), 1309–1321. https://doi.org/10.24127/ajpm.v12i1.6873

Ekong, B., Edet, A., Udonna, U., Uwah, A., & Udoetor, N. (2024). Machine Learning Model for Adverse Drug Reaction Detection Based on Naive Bayes and XGBoost Algorithm. British Journal of Computer, Networking and Information Technology, 7(2), 97–114. https://doi.org/10.52589/BJCNIT-35MFFBC6

El Barakaz, F., Boutkhoum, O., & El Moutaouakkil, A. (2021). A hybrid naïve Bayes based on similarity measure to optimize the mixed-data classification. TELKOMNIKA (Telecommunication Computing Electronics and Control), 19(1), 155–162. https://doi.org/10.12928/telkomnika.v19i1.18024

Iedwan, A. S., Mauliza, N., Pristyanto, Y., Hartanto, A. D., & Rohman, A. N. (2024). Comparative Performance of SVM and Multinomial Naïve Bayes in Sentiment Analysis of the Film’Dirty Vote’. Scientific Journal of Informatics, 11(3), 839–848. https://doi.org/10.15294/sji.v11i3.10290

Irma, I., Suarlin, S., & Rahman, N. (2023). An Examination of Social Science Learning Outcomes Using Group Work and Individual Assignments: Educational Strategies in Focus. Journal of Social Sustainability Impact, 1(2), 1–12. https://ojs.unpatompo.ac.id/index.php/jssi/article/view/259

Li, M.-M., & Tu, C.-C. (2024). Developing a Project-Based Learning Course Model Combined with the Think–Pair–Share Strategy to Enhance Creative Thinking Skills in Education Students. Education Sciences, 14(3), 233. https://doi.org/10.3390/educsci14030233

Lin, L. (2021). Smart teaching evaluation model using weighted naive bayes algorithm. Journal of Intelligent & Fuzzy Systems, 40(2), 2791–2801. https://doi.org/10.3233/JIFS-189320

Liu, P., Cao, F., Yao, Q., Xu, L., & Dai, H. (2023). Effectiveness of educational and training intervention for improving hand hygiene compliance amongst nurses: a systematic review and meta-analysis of randomised controlled trials. Scottish Medical Journal, 69(3), 110–121. https://doi.org/10.1177/00369330231178909

Lorente, S., Arnal-Palacián, M., & Paredes-Velasco, M. (2024). Effectiveness of cooperative, collaborative, and interdisciplinary learning guided by software development in Spanish universities. European Journal of Psychology of Education, 39(4), 4467–4491. https://doi.org/10.1007/s10212-024-00881-y

Melguizo-Garín, A., Ruiz-Rodríguez, I., Peláez-Fernández, M. A., Salas-Rodríguez, J., & Serrano-Ibáñez, E. R. (2022). Relationship between group work competencies and satisfaction with project-based learning among university students. Frontiers in Psychology, 13(811864), 1–5. https://doi.org/10.3389/fpsyg.2022.811864

Mirzaei, A., Carter, S. R., Patanwala, A. E., & Schneider, C. R. (2022). Missing data in surveys: Key concepts, approaches, and applications. Research in Social and Administrative Pharmacy, 18(2), 2308–2316. . https://doi.org/10.1016/j.sapharm.2021.03.009

Nakhipova, V., Kerimbekov, Y., Umarova, Z., ibrahim Bulbul, H., Suleimenova, L., & Adylbekova, E. (2024). Integration of Collaborative Filtering Into Naive Bayes Method to Enhance Student Performance Prediction. International Journal of Information and Communication Technology Education (IJICTE), 20(1), 1–18. https://doi.org/10.4018/IJICTE.352512

Nakhipova, V., Kerimbekov, Y., Umarova, Z., Suleimenova, L., Botayeva, S., Ibashova, A., & Zhumatayev, N. (2024). Use of the naive Bayes classifier algorithm in machine learning for student performance prediction. International Journal of Information and Education Technology, 14(1), 92–98. https://doi.org/10.1016/j.sapharm.2021.03.009

Nhu, V.-H., Shirzadi, A., Shahabi, H., Singh, S. K., Al-Ansari, N., Clague, J. J., Jaafari, A., Chen, W., Miraki, S., & Dou, J. (2020). Shallow landslide susceptibility mapping: A comparison between logistic model tree, logistic regression, naïve bayes tree, artificial neural network, and support vector machine algorithms. International Journal of Environmental Research and Public Health, 17(8), 2749. https://doi.org/10.3390/ijerph17082749

Nurjulaiha, S., Kurniawan, R., Dikananda, A. R., & Suprapti, T. (2025). Optimizing Naïve Bayes Algorithm Through Principal Component Analysis To Improve Dengue Fever Patient Classification Model. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 1005–1015. https://doi.org/10.59934/jaiea.v4i2.798

Qureshi, M. A., Khaskheli, A., Qureshi, J. A., Raza, S. A., & Yousufi, S. Q. (2023). Factors affecting students’ learning performance through collaborative learning and engagement. Interactive Learning Environments, 31(4), 2371–2391. https://doi.org/10.1080/10494820.2021.1884886

Resti, Y., Irsan, C., Neardiaty, A., Annabila, C., & Yani, I. (2023). Fuzzy discretization on the multinomial naïve Bayes method for modeling multiclass classification of corn plant diseases and pests. Mathematics, 11(8), 1761. https://doi.org/10.3390/math11081761

Sabzevari, Y., & Eslamian, S. (2023). Bayesian theory: Methods and applications. In Handbook of Hydroinformatics (pp. 57–68). Elsevier. https://doi.org/10.1016/B978-0-12-821285-1.00026-9

Song, C., Shin, S.-Y., & Shin, K.-S. (2024). Implementing the dynamic feedback-driven learning optimization framework: a machine learning approach to personalize educational pathways. Applied Sciences, 14(2), 916. https://doi.org/10.3390/app14020916

Subasman, I. (2024). Evaluation of The Effectiveness of Group Cooperation In The Context of Problem Base Learning (PBL): A Mixed Method Approach. Jurnal Konseling Pendidikan Islam, 5(1), 11–23. https://doi.org/10.32806/jkpi.v5i1.99

Tan, Q., Mu, X., Fu, M., Yuan, H., Sun, J., Liang, G., & Sun, L. (2022). A new sensor fault diagnosis method for gas leakage monitoring based on the naive Bayes and probabilistic neural network classifier. Measurement, 194, 111037. https://doi.org/10.1016/j.measurement.2022.111037

Tangirala, S. (2020). Evaluating the impact of GINI index and information gain on classification using decision tree classifier algorithm. International Journal of Advanced Computer Science and Applications, 11(2), 612–619. https://doi.org/10.14569/IJACSA.2020.0110277

Uddin, S., Ong, S., & Lu, H. (2022). Machine learning in project analytics: a data-driven framework and case study. Scientific Reports, 12(1), 15252. https://doi.org/10.1038/s41598-022-19728-x

Ujwal, U. J., & Malik, S. (2023). A hybrid weight based feature selection algorithm for predicting students’ academic advancement by employing data science approaches. International Journal of Education and Management Engineering, 13(5), 1. https://doi.org/10.5815/ijeme.2023.05.01

Vu, D.-H., Vu, T.-S., & Luong, T.-D. (2022). An efficient and practical approach for privacy-preserving Naive Bayes classification. Journal of Information Security and Applications, 68, 1–8. https://doi.org/10.1016/j.jisa.2022.103215

Winantu, A., & Khatimah, C. (2023). Perbandingan Metode Klasifikasi Naive Bayes Dan K-Nearest Neighbor Dalam Memprediksi Prestasi Siswa. INTEK : Jurnal Informatika Dan Teknologi Informasi, 6(1 SE-Articles), 58–64. https://doi.org/10.37729/intek.v6i1.3006

Xu, J. J., & Babaian, T. (2021). Artificial intelligence in business curriculum: The pedagogy and learning outcomes. The International Journal of Management Education, 19(3), 100550. https://doi.org/10.1016/j.ijme.2021.100550

Zamiri, M., & Esmaeili, A. (2024). Methods and technologies for supporting knowledge sharing within learning communities: A systematic literature review. Administrative Sciences, 14(1), 17. https://doi.org/10.1016/j.ijme.2021.100550




DOI: https://doi.org/10.31764/jtam.v9i3.30459

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Wardhani Utami Dewi, Ira Vahlia, Nego Linuhung

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: