An Informative Prior of Bayesian Kriging Approach for Monthly Rainfall Interpolation in East Java

Rismania Hartanti Putri Yulianing Damayanti, Suci Astutik, Ani Budi Astuti

Abstract


In spatial data analysis, interpolation is used to estimate values at unobserved locations, but often faces challenges in capturing complex spatial patterns and estimation uncertainty. One of the main obstacles is the small sample size, which makes the empirical variogram difficult to define well in conventional Kriging methods. The Bayesian Kriging approach overcomes this problem by integrating prior information, so it can still produce stable estimates despite limited data. This study is a quantitative, spatial-based research aimed at interpolating monthly rainfall in East Java Province using the Bayesian Kriging approach. The data consist of monthly rainfall measurements from 11 rain gauge stations distributed across East Java, obtained from the Indonesian Agency for Meteorology, Climatology, and Geophysics (BMKG) for the period of January to April 2024. The entire analysis was conducted using R software. A spherical semivariogram model was selected due to its superior fit to the spatial characteristics of the rainfall data in the study area with the smallest RMSE 37.17. This study demonstrates the effectiveness of Bayesian Kriging for rainfall interpolation in tropical regions with sparse data, providing more stable and accurate estimates compared to conventional methods. The scientific contribution of this research lies in showcasing how the integration of informative priors and Bayesian inference enhances interpolation accuracy in data-limited tropical environments. The resulting interpolated maps can inform land-use planning and flood risk mitigation by identifying areas of high rainfall for improved water infrastructure and lower-rainfall regions for targeted irrigation planning.

 


Keywords


Bayesian; Kriging; Rainfall; Spatial.

Full Text:

DOWNLOAD [PDF]

References


Althoff, D., & Rodrigues, L. N. (2021). Goodness-of-fit criteria for hydrological models: Model calibration and performance assessment. Journal of Hydrology, 600, 126674. https://doi.org/10.1016/j.jhydrol.2021.126674

Astutik, S., Astuti, A. B., Efendi, A., Darmanto, D., Irsandy, D., & Saniyawati, F. Y. D. A. S. (2023). Analisis Bayesian: Teori dan Aplikasi dengan R. Universitas Brawijaya Press.

Biswas, A., & Biswas, A. (2024). Geostatistics in Soil Science: A Comprehensive Review on Past, Present and Future Perspectives. Journal of the Indian Society of Soil Science, 72(1), 1–22. https://doi.org/10.5958/0974-0228.2024.00017.1

Bostan, P. (2017). Basic Kriging Methods in Geostatistics. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 27(1), 10–20. https://doi.org/10.29133/yyutbd.305093

Breunig, M., Bradley, P. E., Jahn, M., Kuper, P., Mazroob, N., Rösch, N., Al-Doori, M., Stefanakis, E., & Jadidi, M. (2020). Geospatial Data Management Research: Progress and Future Directions. ISPRS International Journal of Geo-Information, 9(2), 95. https://doi.org/10.3390/ijgi9020095

Charles, T. D. S., Lopes, T. R., Duarte, S. N., Nascimento, J. G., Ricardo, H. D. C., & Pacheco, A. B. (2022). Estimating average annual rainfall by ordinary kriging and TRMM precipitation products in midwestern Brazil. Journal of South American Earth Sciences, 118, 103937. https://doi.org/10.1016/j.jsames.2022.103937

Chutsagulprom, N., Chaisee, K., Wongsaijai, B., Inkeaw, P., & Oonariya, C. (2022). Spatial interpolation methods for estimating monthly rainfall distribution in Thailand. Theoretical and Applied Climatology, 148(1–2), 317–328. https://doi.org/10.1007/s00704-022-03927-7

Cressie, N. A. C. (1993). Statistics for spatial data (2nd ed.). New York: John Wiley & Sons.

Efendi, A., Irsandy, D., Fitriani, R., & Munawar, M. (2023). Bayesian Spatial Analysis for Minimum Wage Schemes in East Java, Indonesia. International Journal of Agricultural and Statistical Sciences, 19(1), 33. https://doi.org/10.59467/IJASS.2023.19.33

Erten, G. E., Yavuz, M., & Deutsch, C. V. (2022). Combination of Machine Learning and Kriging for Spatial Estimation of Geological Attributes. Natural Resources Research, 31(1), 191–213. https://doi.org/10.1007/s11053-021-10003-w

Gao, Y., Meng, H., Pei, T., & Liu, Y. (2024). Understanding Spatial Dependency Among Spatial Interactions. In X. Meng, X. Zhang, D. Guo, D. Hu, B. Zheng, & C. Zhang (Eds.), Spatial Data and Intelligence (Vol. 14619, pp. 28–43). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-2966-1_3

Gelfand, A. E., & Banerjee, S. (2017). Bayesian Modeling and Analysis of Geostatistical Data. Annual Review of Statistics and Its Application, 4(1), 245–266. https://doi.org/10.1146/annurev-statistics-060116-054155

Gribov, A., & Krivoruchko, K. (2020). Empirical Bayesian kriging implementation and usage. Science of The Total Environment, 722, 137290. https://doi.org/10.1016/j.scitotenv.2020.137290

Han, H., & Suh, J. (2024). Spatial Prediction of Soil Contaminants Using a Hybrid Random Forest–Ordinary Kriging Model. Applied Sciences, 14(4), 1666. https://doi.org/10.3390/app14041666

Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geoscientific Model Development, 15(14), 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022

Jamaludin, S., & Suhaimi, H. (2013). Spatial Interpolation on Rainfall Data over Peninsular Malaysia Using Ordinary Kriging. Jurnal Teknologi, 63(2), 51–58. https://doi.org/10.11113/jt.v63.1912

Kanooni, A., & Amogein, E. F. (2025). Comparison of sensitivity of interpolation methods by rain gauge network density. Journal of Irrigation Sciences and Engineering, 47(4), 105–122. https://doi.org/10.22055/jise.2025.48259.2140

Lima, C. H. R., Kwon, H.-H., & Kim, Y.-T. (2021). A Bayesian Kriging model applied for spatial downscaling of daily rainfall from GCMs. Journal of Hydrology, 597, 126095. https://doi.org/10.1016/j.jhydrol.2021.126095

Lu, X., Fan, Y., Hu, Y., Zhang, H., Wei, Y., & Yan, Z. (2024). Spatial distribution characteristics and source analysis of shallow groundwater pollution in typical areas of Yangtze River Delta. Science of The Total Environment, 906, 167369. https://doi.org/10.1016/j.scitotenv.2023.167369

Maulana, I. A., Prasetiyowati, S. S., & Sibaroni, Y. (2022). Prediction of Rainfall Classification of Java Island with ANN-Feature Expansion and Ordinary Kriging. Jurnal Media Informatika Budidarma, 6(4), 1988. https://doi.org/10.30865/mib.v6i4.4556

Nicoletta, L., Daniele, S., Aristide, G., Diego, B., & Massimo, P. (2021). Spatial Interpolation Techniques For innovative Air Quality Monitoring Systems. Chemical Engineering Transactions, 86, 391–396. https://doi.org/10.3303/CET2186066

Omre, H. (1987). Bayesian Kriging—Merging Observations and Qualified Guesses in Kriging. Mathematical Geology, 19, 25–39. https://doi.org/10.1007/BF01275432

Rai, P. K., Mishra, V. N., & Singh, P. (2022). Geospatial technology for landscape and environmental management: Sustainable assessment and planning (1st ed.). Singapore: Springer. https://doi.org/10.1007/978-981-16-7373-3

Sanusi, W., Sidjara, S., Patahuddin, S., & Danial, M. (2024). A Comparison of Spatial Interpolation Methods for Regionalizing Maximum Daily Rainfall Data in South Sulawesi, Indonesia. ITM Web of Conferences, 58, 04003. https://doi.org/10.1051/itmconf/20245804003

Schoot, R. V. D., Depaoli, S., King, R., Kramer, B., Märtens, K., Tadesse, M. G., Vannucci, M., Gelman, A., Veen, D., Willemsen, J., & Yau, C. (2021). Bayesian statistics and modelling. Nature Reviews Methods Primers, 1(1), 1. https://doi.org/10.1038/s43586-020-00001-2

Schoot, R. V. D., & Miočević, M. (2020). Small Sample Size Solutions: A Guide for Applied Researchers and Practitioners (1st ed.). London: Routledge. https://www.taylorfrancis.com/books/9780429273872

Sharma, S., Aggarwal, V., & Yadav, M. P. (2021). Comparison of linear and non-linear GARCH models for forecasting volatility of select emerging countries. Journal of Advances in Management Research, 18(4), 526–547. https://doi.org/10.1108/JAMR-07-2020-0152

Tanner, M. A. (1996). Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions. New York: Springer New York. https://doi.org/10.1007/978-1-4612-4024-2

Uddin, M. S., & Czajkowski, K. P. (2022). Performance Assessment of Spatial Interpolation Methods for the Estimation of Atmospheric Carbon Dioxide in the Wider Geographic Extent. Journal of Geovisualization and Spatial Analysis, 6(1), 10. https://doi.org/10.1007/s41651-022-00105-1

Varga, B., Pereira, M., Kulcsár, B., Pariota, L., & Péni, T. (2023). Data-Driven Distance Metrics for Kriging-Short-Term Urban Traffic State Prediction. IEEE Transactions on Intelligent Transportation Systems, 24(6), 6268–6279. https://doi.org/10.1109/TITS.2023.3251022

Verdin, A., Rajagopalan, B., Kleiber, W., & Funk, C. (2015). A Bayesian kriging approach for blending satellite and ground precipitation observations. Water Resources Research, 51(2), 908–921. https://doi.org/10.1002/2014WR015963

Wesner, J. S., & Pomeranz, J. P. F. (2021). Choosing priors in Bayesian ecological models by simulating from the prior predictive distribution. Ecosphere, 12(9), e03739. https://doi.org/10.1002/ecs2.3739

Zondervan-Zwijnenburg, M., Peeters, M., Depaoli, S., & Van De Schoot, R. (2017). Where Do Priors Come From? Applying Guidelines to Construct Informative Priors in Small Sample Research. Research in Human Development, 14(4), 305–320. https://doi.org/10.1080/15427609.2017.1370966

Zorzetto, E., & Marani, M. (2020). Extreme value metastatistical analysis of remotely sensed rainfall in ungauged areas: Spatial downscaling and error modelling. Advances in Water Resources, 135, 103483. https://doi.org/10.1016/j.advwatres.2019.103483




DOI: https://doi.org/10.31764/jtam.v9i3.31027

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Rismania Hartanti Putri Yulianing Damayanti, Suci Astutik, Ani Budi Astuti

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: