Forecasting the Number of Dropout Student in Indonesia using ARIMA Model

Aisyah Dhifa Az-Zahra, Luthfia Azzahra Fajriati, Sherlyana Devita Sari

Abstract


The high rate of dropout students in Indonesia remains a matter of considerable concern, as it erodes the quality of education and hinders the long-term development of human capital. The government of Indonesia has endeavored to address the issue of high dropout rates among students by implementing a range of initiatives. To demonstrate the effectiveness of this program, forecasting is necessary to measure and predict its outcomes. The purpose of this study is to utilize a time series approach, specifically the Autoregressive Integrated Moving Average (ARIMA) model, to predict the number of dropout students in the forthcoming years. This study employs a quantitative analysis using secondary data obtained from Statistics Indonesia (BPS) for the period 1970-2023. The ARIMA method is a statistical technique used to determine the most suitable forecasting model from historical data. This method has gained widespread popularity in the field of time series analysis due to its ability to manage non-stationary data effectively. The result shows that ARIMA (0,2,1) has the smallest AIC and meets the significant criteria model, also having the lowest MAPE value of 1.9%, indicating excellent forecasting accuracy. The plot of the result indicates a downward trend in the number of dropout students over the coming years. This downward trend aligns with the timeline of government interventions, suggesting a potential causal relationship between the implementation of educational support programs and the declining dropout rates. Thus, the prediction supports the effectiveness of these initiatives in mitigating dropout student in Indonesia.

Keywords


Forecasting; Statistics; ARIMA; Dropout; Government.

Full Text:

DOWNLOAD [PDF]

References


Ajewole, K. P., Adejuwon, S. O., & Jemilohun, V. G. (2020). Test for Stationarity on Inflation Rates in Nigeria using Augmented Dickey Fuller Test and Phillips-Persons Test. IOSR Journal of Mathematics, 16(3), 11–14. https://api.semanticscholar.org/CorpusID:220070542

Amini, M. H., Kargarian, A., & Karabasoglu, O. (2016). ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation. Electric Power Systems Research, 140(11), 378–390. https://doi.org/10.1016/j.epsr.2016.06.003

Box, G. E. P., Jenkins, G. M. J., Rainsel, G. C., & Ljung, G. M. (2016). Time Series Analysis Forecasting and Control (fifth). John Wiley & Sons. http://dx.doi.org/10.1111/jtsa.12194

Cahyaningtyas, A., Akbar, B. D. H., & Lestari, C. D. (2022). Dampak Bantuan Operasional Sekolah Terhadap Putus Sekolah di Indonesia. HIMIE Economics Research and Olympiad (HERO), 1(1), 116–122.

Cavanaugh, J. E., & Neath, A. A. (2019). The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. WIREs Computational Statistics, 11(3), e1460. https://doi.org/10.1002/wics.1460

Chakrabarti, A., & Ghosh, J. K. (2011). AIC, BIC and Recent Advances in Model Selection. In handbook of Philosophy of Science, Philosophy of Statistics, volume 7, (pp. 583–605), ISSN 18789846, ISBN 9780444518620. https://doi.org/10.1016/B978-0-444-51862-0.50018-6

Chang, P.-C., Wang, Y.-W., & Liu, C.-H. (2007). The development of a weighted evolving fuzzy neural network for PCB sales forecasting. Expert Systems with Applications, 32(1), 86–96. https://doi.org/10.1016/j.eswa.2005.11.021

Din, M. A. (2016). ARIMA by Box Jenkins Methodology for Estimation and Forecasting Models in Higher Education. Athens: Atiner's Conference Paper Series, No:EMS2015-1846. http://dx.doi.org/10.13140/RG.2.1.1259.6888

Fahrin, E., Hayati, M. N., & Siringoringo, M. (2019). Penerapan Model Seasonal Autoregressive Fractionally Integrated Moving Average Pada Data Inflasi di Indonesia. 10(2), 113–118. https://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/568

Florea, N. M., & Hurjui, E. (2015). Critical Thinking in Elementary School Children. Procedia - Social and Behavioral Sciences, 180(16), 565–572. https://doi.org/10.1016/j.sbspro.2015.02.161

Gambulao, R. Jr. (2023). Forecasting Dropout Trend at King’s College of The Philippines using ARI-MA Modeling. International Journal of Multidisciplinary: Applied Business and Education Research, 4(6), 2094–2100. https://doi.org/10.11594/ijmaber.04.06.32

Gao, Y., Mosalam, K. M., Chen, Y., Wang, W., & Chen, Y. (2021). Auto-Regressive Integrated Moving-Average Machine Learning for Damage Identification of Steel Frames. Applied Sciences, 11(13), Article 13. https://doi.org/10.3390/app11136084

Grigonytė, E., & Butkevičiūtė, E. (2016). Short-term wind speed forecasting using ARIMA model. Energetika, 62(1–2), Article 1–2. https://doi.org/10.6001/energetika.v62i1-2.3313

Guo, Z. (2023). Research on the Augmented Dickey-Fuller Test for Predicting Stock Prices and Returns. Advances in Economics, Management and Political Sciences, 44(1), 101–106. https://doi.org/10.54254/2754-1169/44/20232198

Hassani, H., Mashhad, L. M., Royer-Carenzi, M., Yeganegi, M. R., & Komendantova, N. (2025). White Noise and Its Misapplications: Impacts on Time Series Model Adequacy and Forecasting. Forecasting, 7(1), 8. https://doi.org/10.3390/forecast7010008

Hegre, H., Metternich, N. W., Nygård, H. M., & Wucherpfennig, J. (2017). Introduction: Forecasting in peace research. Journal of Peace Research, 54(2), 113–124. https://doi.org/10.1177/0022343317691330

Hjorth, C. F., Bilgrav, L., Frandsen, L. S., Overgaard, C., Torp-Pedersen, C., Nielsen, B., & Bøggild, H. (2016). Mental health and school dropout across educational levels and genders: A 4.8-year follow-up study. BMC Public Health, 16(1), 976. https://doi.org/10.1186/s12889-016-3622-8

Imam, A. (2021). Investigation of Parameter Behaviors in Stationarity of Autoregressive and Moving Average Models through Simulations. 4(4). https://doi.org/10.22377/ajms.v4i4.295

Jain, G., & Mallick, B. (n.d.). A Study of Time Series Models ARIMA and ETS. International Journal of Modern Education and Computer Science, 9(4), 57–63. https://doi.org/10.5815/ijmecs.2017.04.07

Juvina, I., Larue, O., Widmer, C., Ganapathy, S., Nadella, S., Minnery, B., Ramshaw, L., Servan-Schreiber, E., Balick, M., & Weischedel, R. (2020). Computer-Supported Collaborative Information Search for Geopolitical Forecasting (W. T. Fu & H. Van Oostendorp, Eds.; pp. 245–266). Springer International Publishing. https://doi.org/10.1007/978-3-030-38825-6_12

Kim, S. G., Park ,Cheolyong, Hwang ,Sun-Young, Ha ,Jeongcheol, Park ,Inho, & and Kim, T. Y. (2024). Unit root tests and their challenges. Communications in Statistics - Theory and Methods, 53(8), 2840–2847. https://doi.org/10.1080/03610926.2022.2150050

Klawonn, F., Riekeberg, N., & Hoffmann, G. (2024). Importance and Uncertainty of λ-Estimation for Box–Cox Transformations to Compute and Verify Reference Intervals in Laboratory Medicine. Stats, 7(1), 172–184. https://doi.org/10.3390/stats7010011

Kopnina, H. (2020). Education for the future? Critical evaluation of education for sustainable development goals. The Journal of Environmental Education, 51(4), 280–291. https://doi.org/10.1080/00958964.2019.1710444

Le, L.-H. (2024). Time series analysis and applications in data analysis, forecasting and prediction. HPU2 Journal of Science: Natural Sciences and Technology, 3(1), Article 1. https://doi.org/10.56764/hpu2.jos.2024.3.1.20-29

Liu, T., Liu, S., & Shi, L. (2020). ARIMA Modelling and Forecasting. In T. Liu, S. Liu, & L. Shi, Time Series Analysis Using SAS Enterprise Guide (pp. 61–85). Springer Singapore. https://doi.org/10.1007/978-981-15-0321-4_4

Luo, L. (2024). Statistical model validation through white noise hypothesis testing in regression analysis and ARIMA models. Theoretical and Natural Science, 42(1), 227–232. https://doi.org/10.54254/2753-8818/42/20240672

Lutz, C. S., Huynh, M. P., Schroeder, M., Anyatonwu, S., Dahlgren, F. S., Danyluk, G., Fernandez, D., Greene, S. K., Kipshidze, N., Liu, L., Mgbere, O., McHugh, L. A., Myers, J. F., Siniscalchi, A., Sullivan, A. D., West, N., Johansson, M. A., & Biggerstaff, M. (2019). Applying infectious disease forecasting to public health: A path forward using influenza forecasting examples. BMC Public Health, 19(1), 1659. https://doi.org/10.1186/s12889-019-7966-8

Maitra, S., & Politis, D. N. (2024). Prepivoted Augmented Dickey-Fuller Test with Bootstrap-Assisted Lag Length Selection. Stats, 7(4), 1226–1244. https://doi.org/10.3390/stats7040072

Marlini, H. (2016). EVALUASI PROGRAM BANTUAN SISWA MISKIN (BSM) DI SMP NEGERI 4 SANGGAU. PUBLIKA : Juenal Ilmu Administrasi Negara, 5(3), 1–18. http://dx.doi.org/10.26418%2Fpublika.v5i3.1120

Martin, G. M., Frazier, D. T., Maneesoonthorn, W., Loaiza-Maya, R., Huber, F., Koop, G., Maheu, J., Nibbering, D., & Panagiotelis, A. (2023). Bayesian Forecasting in Economics and Finance: A Modern Review (arXiv:2212.03471). arXiv. https://doi.org/10.48550/arXiv.2212.03471

Mduma, N., Kalegele, K., & Machuve, D. (2019). A Survey of Machine Learning Approaches and Techniques for Student Dropout Prediction. Data Science Journal, 18(1), 14. https://doi.org/10.5334/dsj-2019-014

Moniz, A. B. (2022). Forecasting and Responsible Innovation: A Book Review. Frontiers in Sociology, 7, 835277. https://doi.org/10.3389/fsoc.2022.835277

Murat, M., Malinowska, I., Gos, M., & Krzyszczak, J. (2018). Forecasting daily meteorological time series using ARIMA and regression models. International Agrophysics, 32(2), 253–264. https://doi.org/10.1515/intag-2017-0007

Nurmalitasari, Awang Long, Z., & Faizuddin Mohd Noor, M. (2023). Factors Influencing Dropout Students in Higher Education. Education Research International, 2023(1), 7704142. https://doi.org/10.1155/2023/7704142

Nurrokhmah, M. (2021). Program Indonesia Pintar (PIP): Implementasi Kebijakan Kesejahteraan dalam Upaya Meningkatkan Angka Partisipasi Pendidikan. Jurnal Paradigma : Jurnal Multidisipliner Mahasiswa Pascasarjana Indonesia, 2(1), 37–48. https://doi.org/10.22146/jpmmpi.v2i1.66256

Patulin, E. P. (2019). Scholarship Grants Prediction using Autoregressive Integrated Moving Average (ARIMA) Algorithm. International Journal of Advanced Trends in Computer Science and Engineering, 8(3), 551–555. https://doi.org/10.30534/ijatcse/2019/33832019

Rahardja, D. (2024). Statistical time-series forecast error and bias assessment using hold-out samples and a single benchmark (data-reduction) scoring metric. Journal of Statistics and Management Systems, 27(3), 569–578. https://doi.org/10.47974/JSMS-974

Ratnesh, G., & Kumar, S. A. (2019). Estimation of Autocorrelation function and partial Autocorrelation function of Evapotranspiration for Ranchi district, India, in context of time series Modelling. International Journal of Scientific Research and Reviews, 08(04), 21–31. https://doi.org/10.37794/IJSRR.2019.8403

Riyadi, M. A. A., Pratiwi, D. S., Irawan, A. R., & Fithriasari, K. (2017). Clustering stationary and non-stationary time series based on autocorrelation distance of hierarchical and k-means algorithms. International Journal of Advances in Intelligent Informatics, 3(3), 154. https://doi.org/10.26555/ijain.v3i3.98

Sharafi, M., Ghaem, H., Tabatabaee, H. R., & Faramarzi, H. (2017). Forecasting the number of zoonotic cutaneous leishmaniasis cases in south of Fars province, Iran using seasonal ARIMA time series method. Asian Pacific Journal of Tropical Medicine, 10(1), 79–86. https://doi.org/10.1016/j.apjtm.2016.12.007

Shivhare, N., Rahul, A. K., Dwivedi, S. B., & Dikshit, P. K. S. (2021). ARIMA based daily weather forecasting tool: A case study for Varanasi. MAUSAM, 70(1), 133–140. https://doi.org/10.54302/mausam.v70i1.179

Shoko, C., & Njuho, P. (2023). Arima Model In Predicting Of Covid-19 Epidemic For The Southern Africa Region. African Journal of Infectious Diseases, 17(1), 1–9. https://doi.org/10.21010/Ajidv17i1.1

Shumway, R. H., & Stoffer, D. S. (2017). Time Series Analysis and Its Applications: With R Examples. Springer International Publishing. https://doi.org/10.1007/978-3-319-52452-8

Singh, H. P., & Alhamad, I. A. (2022). Influence of National Culture on Perspectives and Factors Affecting Student Dropout: A Comparative Study of Australia, Saudi Arabia, and Ethiopia. Archives of Business Research, 10(11), 287–300. https://doi.org/10.14738/abr.1011.13508

Sinuany-Stern, Z. (2021). Forecasting Methods in Higher Education: An Overview. In: Sinuany-Stern, Z. (eds) Handbook of Operations Research and Management Science in Higher Education. International Series in Operations Research & Management Science, vol 309, 131–157. Springer, Cham. https://doi.org/10.1007/978-3-030-74051-1_5

Syafitri, D. U., & Hadjam, M. N. R. (2017). Religiusitas: Faktor Protektif Pengasuhan Orangtua dengan Status Sosial Ekonomi Rendah. Psikologika: Jurnal Pemikiran dan Penelitian Psikologi, 22(2), 1–14. https://doi.org/10.20885/psikologika.vol22.iss2.art1

Utami, D. S., Huda, N. M., & Imro’ah, N. (2024). ARIMA Time Series Modeling with the Addition of Intervention and Outlier Factors on Inflation Rate in Indonesia. JTAM (Jurnal Teori Dan Aplikasi Matematika), 8(1), 256. https://doi.org/10.31764/jtam.v8i1.17487

Yaneri, A., Suviani, V., & Vonika, N. (2022). Analisis Penyebab Anak Putus Sekolah Bagi Keluarga Miskin (Studi Kasus Anak Usia Sekolah Pada Keluarga Miskin di Kampung Lio Kota Depok). Jurnal Ilmiah Perlindungan dan Pemberdayaan Sosial (Lindayasos), 4(1), 76-89. https://doi.org/10.31595/lindayasos.v4i1.554




DOI: https://doi.org/10.31764/jtam.v9i3.31625

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Aisyah Dhifa Az-Zahra, Luthfia Azzahra Fajriati, Sherlyana Devita Sari

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: