Forecasting the Number of Dropout Student in Indonesia using ARIMA Model
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Ajewole, K. P., Adejuwon, S. O., & Jemilohun, V. G. (2020). Test for Stationarity on Inflation Rates in Nigeria using Augmented Dickey Fuller Test and Phillips-Persons Test. IOSR Journal of Mathematics, 16(3), 11–14. https://api.semanticscholar.org/CorpusID:220070542
Amini, M. H., Kargarian, A., & Karabasoglu, O. (2016). ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation. Electric Power Systems Research, 140(11), 378–390. https://doi.org/10.1016/j.epsr.2016.06.003
Box, G. E. P., Jenkins, G. M. J., Rainsel, G. C., & Ljung, G. M. (2016). Time Series Analysis Forecasting and Control (fifth). John Wiley & Sons. http://dx.doi.org/10.1111/jtsa.12194
Cahyaningtyas, A., Akbar, B. D. H., & Lestari, C. D. (2022). Dampak Bantuan Operasional Sekolah Terhadap Putus Sekolah di Indonesia. HIMIE Economics Research and Olympiad (HERO), 1(1), 116–122.
Cavanaugh, J. E., & Neath, A. A. (2019). The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. WIREs Computational Statistics, 11(3), e1460. https://doi.org/10.1002/wics.1460
Chakrabarti, A., & Ghosh, J. K. (2011). AIC, BIC and Recent Advances in Model Selection. In handbook of Philosophy of Science, Philosophy of Statistics, volume 7, (pp. 583–605), ISSN 18789846, ISBN 9780444518620. https://doi.org/10.1016/B978-0-444-51862-0.50018-6
Chang, P.-C., Wang, Y.-W., & Liu, C.-H. (2007). The development of a weighted evolving fuzzy neural network for PCB sales forecasting. Expert Systems with Applications, 32(1), 86–96. https://doi.org/10.1016/j.eswa.2005.11.021
Din, M. A. (2016). ARIMA by Box Jenkins Methodology for Estimation and Forecasting Models in Higher Education. Athens: Atiner's Conference Paper Series, No:EMS2015-1846. http://dx.doi.org/10.13140/RG.2.1.1259.6888
Fahrin, E., Hayati, M. N., & Siringoringo, M. (2019). Penerapan Model Seasonal Autoregressive Fractionally Integrated Moving Average Pada Data Inflasi di Indonesia. 10(2), 113–118. https://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/568
Florea, N. M., & Hurjui, E. (2015). Critical Thinking in Elementary School Children. Procedia - Social and Behavioral Sciences, 180(16), 565–572. https://doi.org/10.1016/j.sbspro.2015.02.161
Gambulao, R. Jr. (2023). Forecasting Dropout Trend at King’s College of The Philippines using ARI-MA Modeling. International Journal of Multidisciplinary: Applied Business and Education Research, 4(6), 2094–2100. https://doi.org/10.11594/ijmaber.04.06.32
Gao, Y., Mosalam, K. M., Chen, Y., Wang, W., & Chen, Y. (2021). Auto-Regressive Integrated Moving-Average Machine Learning for Damage Identification of Steel Frames. Applied Sciences, 11(13), Article 13. https://doi.org/10.3390/app11136084
Grigonytė, E., & Butkevičiūtė, E. (2016). Short-term wind speed forecasting using ARIMA model. Energetika, 62(1–2), Article 1–2. https://doi.org/10.6001/energetika.v62i1-2.3313
Guo, Z. (2023). Research on the Augmented Dickey-Fuller Test for Predicting Stock Prices and Returns. Advances in Economics, Management and Political Sciences, 44(1), 101–106. https://doi.org/10.54254/2754-1169/44/20232198
Hassani, H., Mashhad, L. M., Royer-Carenzi, M., Yeganegi, M. R., & Komendantova, N. (2025). White Noise and Its Misapplications: Impacts on Time Series Model Adequacy and Forecasting. Forecasting, 7(1), 8. https://doi.org/10.3390/forecast7010008
Hegre, H., Metternich, N. W., Nygård, H. M., & Wucherpfennig, J. (2017). Introduction: Forecasting in peace research. Journal of Peace Research, 54(2), 113–124. https://doi.org/10.1177/0022343317691330
Hjorth, C. F., Bilgrav, L., Frandsen, L. S., Overgaard, C., Torp-Pedersen, C., Nielsen, B., & Bøggild, H. (2016). Mental health and school dropout across educational levels and genders: A 4.8-year follow-up study. BMC Public Health, 16(1), 976. https://doi.org/10.1186/s12889-016-3622-8
Imam, A. (2021). Investigation of Parameter Behaviors in Stationarity of Autoregressive and Moving Average Models through Simulations. 4(4). https://doi.org/10.22377/ajms.v4i4.295
Jain, G., & Mallick, B. (n.d.). A Study of Time Series Models ARIMA and ETS. International Journal of Modern Education and Computer Science, 9(4), 57–63. https://doi.org/10.5815/ijmecs.2017.04.07
Juvina, I., Larue, O., Widmer, C., Ganapathy, S., Nadella, S., Minnery, B., Ramshaw, L., Servan-Schreiber, E., Balick, M., & Weischedel, R. (2020). Computer-Supported Collaborative Information Search for Geopolitical Forecasting (W. T. Fu & H. Van Oostendorp, Eds.; pp. 245–266). Springer International Publishing. https://doi.org/10.1007/978-3-030-38825-6_12
Kim, S. G., Park ,Cheolyong, Hwang ,Sun-Young, Ha ,Jeongcheol, Park ,Inho, & and Kim, T. Y. (2024). Unit root tests and their challenges. Communications in Statistics - Theory and Methods, 53(8), 2840–2847. https://doi.org/10.1080/03610926.2022.2150050
Klawonn, F., Riekeberg, N., & Hoffmann, G. (2024). Importance and Uncertainty of λ-Estimation for Box–Cox Transformations to Compute and Verify Reference Intervals in Laboratory Medicine. Stats, 7(1), 172–184. https://doi.org/10.3390/stats7010011
Kopnina, H. (2020). Education for the future? Critical evaluation of education for sustainable development goals. The Journal of Environmental Education, 51(4), 280–291. https://doi.org/10.1080/00958964.2019.1710444
Le, L.-H. (2024). Time series analysis and applications in data analysis, forecasting and prediction. HPU2 Journal of Science: Natural Sciences and Technology, 3(1), Article 1. https://doi.org/10.56764/hpu2.jos.2024.3.1.20-29
Liu, T., Liu, S., & Shi, L. (2020). ARIMA Modelling and Forecasting. In T. Liu, S. Liu, & L. Shi, Time Series Analysis Using SAS Enterprise Guide (pp. 61–85). Springer Singapore. https://doi.org/10.1007/978-981-15-0321-4_4
Luo, L. (2024). Statistical model validation through white noise hypothesis testing in regression analysis and ARIMA models. Theoretical and Natural Science, 42(1), 227–232. https://doi.org/10.54254/2753-8818/42/20240672
Lutz, C. S., Huynh, M. P., Schroeder, M., Anyatonwu, S., Dahlgren, F. S., Danyluk, G., Fernandez, D., Greene, S. K., Kipshidze, N., Liu, L., Mgbere, O., McHugh, L. A., Myers, J. F., Siniscalchi, A., Sullivan, A. D., West, N., Johansson, M. A., & Biggerstaff, M. (2019). Applying infectious disease forecasting to public health: A path forward using influenza forecasting examples. BMC Public Health, 19(1), 1659. https://doi.org/10.1186/s12889-019-7966-8
Maitra, S., & Politis, D. N. (2024). Prepivoted Augmented Dickey-Fuller Test with Bootstrap-Assisted Lag Length Selection. Stats, 7(4), 1226–1244. https://doi.org/10.3390/stats7040072
Marlini, H. (2016). EVALUASI PROGRAM BANTUAN SISWA MISKIN (BSM) DI SMP NEGERI 4 SANGGAU. PUBLIKA : Juenal Ilmu Administrasi Negara, 5(3), 1–18. http://dx.doi.org/10.26418%2Fpublika.v5i3.1120
Martin, G. M., Frazier, D. T., Maneesoonthorn, W., Loaiza-Maya, R., Huber, F., Koop, G., Maheu, J., Nibbering, D., & Panagiotelis, A. (2023). Bayesian Forecasting in Economics and Finance: A Modern Review (arXiv:2212.03471). arXiv. https://doi.org/10.48550/arXiv.2212.03471
Mduma, N., Kalegele, K., & Machuve, D. (2019). A Survey of Machine Learning Approaches and Techniques for Student Dropout Prediction. Data Science Journal, 18(1), 14. https://doi.org/10.5334/dsj-2019-014
Moniz, A. B. (2022). Forecasting and Responsible Innovation: A Book Review. Frontiers in Sociology, 7, 835277. https://doi.org/10.3389/fsoc.2022.835277
Murat, M., Malinowska, I., Gos, M., & Krzyszczak, J. (2018). Forecasting daily meteorological time series using ARIMA and regression models. International Agrophysics, 32(2), 253–264. https://doi.org/10.1515/intag-2017-0007
Nurmalitasari, Awang Long, Z., & Faizuddin Mohd Noor, M. (2023). Factors Influencing Dropout Students in Higher Education. Education Research International, 2023(1), 7704142. https://doi.org/10.1155/2023/7704142
Nurrokhmah, M. (2021). Program Indonesia Pintar (PIP): Implementasi Kebijakan Kesejahteraan dalam Upaya Meningkatkan Angka Partisipasi Pendidikan. Jurnal Paradigma : Jurnal Multidisipliner Mahasiswa Pascasarjana Indonesia, 2(1), 37–48. https://doi.org/10.22146/jpmmpi.v2i1.66256
Patulin, E. P. (2019). Scholarship Grants Prediction using Autoregressive Integrated Moving Average (ARIMA) Algorithm. International Journal of Advanced Trends in Computer Science and Engineering, 8(3), 551–555. https://doi.org/10.30534/ijatcse/2019/33832019
Rahardja, D. (2024). Statistical time-series forecast error and bias assessment using hold-out samples and a single benchmark (data-reduction) scoring metric. Journal of Statistics and Management Systems, 27(3), 569–578. https://doi.org/10.47974/JSMS-974
Ratnesh, G., & Kumar, S. A. (2019). Estimation of Autocorrelation function and partial Autocorrelation function of Evapotranspiration for Ranchi district, India, in context of time series Modelling. International Journal of Scientific Research and Reviews, 08(04), 21–31. https://doi.org/10.37794/IJSRR.2019.8403
Riyadi, M. A. A., Pratiwi, D. S., Irawan, A. R., & Fithriasari, K. (2017). Clustering stationary and non-stationary time series based on autocorrelation distance of hierarchical and k-means algorithms. International Journal of Advances in Intelligent Informatics, 3(3), 154. https://doi.org/10.26555/ijain.v3i3.98
Sharafi, M., Ghaem, H., Tabatabaee, H. R., & Faramarzi, H. (2017). Forecasting the number of zoonotic cutaneous leishmaniasis cases in south of Fars province, Iran using seasonal ARIMA time series method. Asian Pacific Journal of Tropical Medicine, 10(1), 79–86. https://doi.org/10.1016/j.apjtm.2016.12.007
Shivhare, N., Rahul, A. K., Dwivedi, S. B., & Dikshit, P. K. S. (2021). ARIMA based daily weather forecasting tool: A case study for Varanasi. MAUSAM, 70(1), 133–140. https://doi.org/10.54302/mausam.v70i1.179
Shoko, C., & Njuho, P. (2023). Arima Model In Predicting Of Covid-19 Epidemic For The Southern Africa Region. African Journal of Infectious Diseases, 17(1), 1–9. https://doi.org/10.21010/Ajidv17i1.1
Shumway, R. H., & Stoffer, D. S. (2017). Time Series Analysis and Its Applications: With R Examples. Springer International Publishing. https://doi.org/10.1007/978-3-319-52452-8
Singh, H. P., & Alhamad, I. A. (2022). Influence of National Culture on Perspectives and Factors Affecting Student Dropout: A Comparative Study of Australia, Saudi Arabia, and Ethiopia. Archives of Business Research, 10(11), 287–300. https://doi.org/10.14738/abr.1011.13508
Sinuany-Stern, Z. (2021). Forecasting Methods in Higher Education: An Overview. In: Sinuany-Stern, Z. (eds) Handbook of Operations Research and Management Science in Higher Education. International Series in Operations Research & Management Science, vol 309, 131–157. Springer, Cham. https://doi.org/10.1007/978-3-030-74051-1_5
Syafitri, D. U., & Hadjam, M. N. R. (2017). Religiusitas: Faktor Protektif Pengasuhan Orangtua dengan Status Sosial Ekonomi Rendah. Psikologika: Jurnal Pemikiran dan Penelitian Psikologi, 22(2), 1–14. https://doi.org/10.20885/psikologika.vol22.iss2.art1
Utami, D. S., Huda, N. M., & Imro’ah, N. (2024). ARIMA Time Series Modeling with the Addition of Intervention and Outlier Factors on Inflation Rate in Indonesia. JTAM (Jurnal Teori Dan Aplikasi Matematika), 8(1), 256. https://doi.org/10.31764/jtam.v8i1.17487
Yaneri, A., Suviani, V., & Vonika, N. (2022). Analisis Penyebab Anak Putus Sekolah Bagi Keluarga Miskin (Studi Kasus Anak Usia Sekolah Pada Keluarga Miskin di Kampung Lio Kota Depok). Jurnal Ilmiah Perlindungan dan Pemberdayaan Sosial (Lindayasos), 4(1), 76-89. https://doi.org/10.31595/lindayasos.v4i1.554
DOI: https://doi.org/10.31764/jtam.v9i3.31625
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Aisyah Dhifa Az-Zahra, Luthfia Azzahra Fajriati, Sherlyana Devita Sari

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: