Complexity of Graphs with Wheel Graph and Fan Graph as their Blocks
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Bača, M., Kimáková, Z., Lascsáková, M., & Semaničová-Feňovčíková, A. (2021). The Irregularity and Modular Irregularity Strength of Fan Graphs. Symmetry, 13(4), 605. https://doi.org/10.3390/sym13040605
Budi, H., Tirta, I., Agustin, I., Kristiana, A., & others. (2021). On rainbow antimagic coloring of graphs. Journal of Physics: Conference Series, 1832(1), 012016. https://doi.org/10.1088/1742-6596/1832/1/012016
Daoud, S. N. (2015). The deletion-contraction method for counting the number of spanning trees of graphs. The European Physical Journal Plus, 130(10), 217. https://doi.org/10.1140/epjp/i2015-15217-y
Daoud, S. N. (2017). Complexity of graphs generated by wheel graph and their asymptotic limits. Journal of the Egyptian Mathematical Society, 25(4), 424–433. https://doi.org/10.1016/j.joems.2017.07.005
Daoud, S. N. (2018). Complexity of Join and Corona graphs and Chebyshev polynomials. Journal of Taibah University for Science, 12(5), 557–572. https://doi.org/10.1080/16583655.2018.1502486
Daoud, S. N. (2019). Number of spanning trees of some families of graphs generated by a triangle. Journal of Taibah University for Science, 13(1), 731–739. https://doi.org/10.1080/16583655.2019.1626074
Daoud, S. N., & Mohamed, K. (2017). The complexity of some families of cycle-related graphs. Journal of Taibah University for Science, 11(2), 205–228. https://doi.org/10.1016/j.jtusci.2016.04.002
Daoud, S. N., & Saleh, W. (2020). Complexity trees of the sequence of some nonahedral graphs generated by triangle. Heliyon, 6(9). https://doi.org/10.1016/j.heliyon.2020.e04786
Deen, M. R. Z. E. (2023). Enumeration of spanning trees in prisms of some graphs. Proyecciones (Antofagasta), 42(2), 339–391. https://doi.org/10.22199/issn.0717-6279-4664
Deen, M. R. Z. E., & Aboamer, W. A. (2021). Complexity of Some Duplicating Networks. IEEE Access, 9, 56736–56756. https://doi.org/10.1109/access.2021.3059048
Deen, M. R. Z. E., Aboamer, W. A., & El-Sherbiny, H. M. (2023). The Complexity of the Super Subdivision of Cycle-Related Graphs Using Block Matrices. Computation, 11(8), 162. https://doi.org/10.3390/computation11080162
Fikadila, L., Kusumastuti, N., & Pasaribu, M. (2024). Penentuan Banyaknya Pohon Perentang Menggunakan Teorema Pohon Matriks. Bimaster: Buletin Ilmiah Matematika, Statistika Dan Terapannya, 13(2), 259–266. https://doi.org/10.26418/bbimst.v13i2.77239
Fran, F., Alexander, Yundari, Romanda, P., & Febyolga, E. (2024). The Complexity of Octopus Graph, Friendship Graph, and Snail Graph. EduMatSains : Jurnal Pendidikan, Matematika Dan Sains, 9(1), 84–101. https://doi.org/10.33541/edumatsains.v9i1.6042
Fran, F., Yundari, Hanssen, C., & Nurliantika. (2025). The complexity of triangular book graph, butterfly graph, lintang graph, and cycle books graph. AIP Conference Proceedings, 3142(1), 020088. https://doi.org/10.1063/5.0262263
Hanssen, C., Fran, F., & Yundari. (2024). The Complexity of Pencil Graph and Line Pencil Graph. PYTHAGORAS Jurnal Pendidikan Matematika, 19(2), 115–125. https://doi.org/10.21831/pythagoras.v19i2.77747
Holzer, F. (2022). Matrix tree theorems [Diploma Thesis]. TU Wien.
Inayah, N., Erfanian, A., & Korivand, M. (2022). Total Product and Total Edge Product Cordial Labelings of Dragonfly Graph (Dgn). Journal of Mathematics, 2022(1), 1–6. https://doi.org/10.1155/2022/3728344
Koutrouli, M., Karatzas, E., Paez-Espino, D., & Pavlopoulos, G. A. (2020). A Guide to Conquer the Biological Network Era Using Graph Theory. Frontiers in Bioengineering and Biotechnology, 8, 34. https://doi.org/10.3389/fbioe.2020.00034
Li, B., Broersma, H., & Zhang, S. (2018). Conditions for graphs to be path partition optimal. Discrete Mathematics, 341(5), 1350–1358. https://doi.org/10.1016/j.disc.2018.02.011
Liu, J.-B., & Daoud, S. N. (2018). The Complexity of Some Classes of Pyramid Graphs Created from a Gear Graph. Symmetry, 10(12), 689. https://doi.org/10.3390/sym10120689
Liu, J.-B., & Daoud, S. N. (2019). Number of Spanning Trees in the Sequence of Some Graphs. Complexity, 2019(1), 4271783. https://doi.org/10.1155/2019/4271783
Liu, J.-B., Munir, M., Yousaf, A., Naseem, A., & Ayub, K. (2019). Distance and Adjacency Energies of Multi-Level Wheel Networks. Mathematics, 7(1), 43. https://doi.org/10.3390/math7010043
Mohamed, B., & Amin, M. (2024). Complexity of Some Types of Cyclic Snake Graphs. Mathematical Modelling and Applications, 9(1), 14–22. https://doi.org/10.11648/j.mma.20240901.12
Nurliantika, N., Fran, F., & Yundari. (2025). Determinants of Tridiagonal and Circulant Matrices Special Form by Chebyshev Polynomials. JTAM (Jurnal Teori Dan Aplikasi Matematika), 9(1), 190–205. https://doi.org/10.31764/jtam.v9i1.27871
Shang, Y. (2016). On the number of spanning trees, the Laplacian eigenvalues, and the Laplacian Estrada index of subdivided-line graphs. Open Mathematics, 14(1), 641–648. https://doi.org/10.1515/math-2016-0055
Sun, W., Wang, S., & Zhang, J. (2016). Counting spanning trees in prism and anti-prism graphs. Journal of Applied Analysis & Computation, 6(1), 65–75. https://doi.org/10.11948/2016006
Wei, Y., Gao, Z., & Lu, X. (2023). The Complexity of Wheel Graphs with Multiple Edges and Vertices. Asian Research Journal of Mathematics, 19(9), 1–12. https://doi.org/10.9734/arjom/2023/v19i9694
DOI: https://doi.org/10.31764/jtam.v9i4.32776
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Alexander, Fransiskus Fran, Nilamsari Kusumastut

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: