Analysis of the Spatial Error Model with Queen Contiguity Matrix Weights on Dengue Fever

Siti Soraya, Istin Fitriani Aziza, Rizwan Arisandi, Kirti Verma, Widani Darma Isasi, Suliadi Firdaus Sufahani

Abstract


Dengue Fever is one of the deadly diseases caused by a rapidly spreading virus transmitted through the Aedes aegypti mosquito. This study focuses on the NTB region, which has different geographical characteristics and infrastructure challenges. The variables used in this study are: dengue fever incidence, population, hospitals, community health centers, poor residents, and floods. The aim of this study is to model the factors that influence the occurrence of dengue fever in NTB. The method used is the Spatial Error Model (SEM), which serves to analyze spatial data to observe spatial correlation in the error variables. The research results indicate that the Moran Index and the Lagrange Multiplier test confirm the existence of spatial dependence in the error aspects. Significant variables at the 5% level affecting dengue fever cases are population size, the number of hospitals, and the number of community health centers. These findings provide an important scientific contribution as they represent one of the early studies that specifically identify and model the spatial dependence patterns of dengue fever cases in West Nusa Tenggara using a spatial econometric approach, thereby enriching the literature on spatial epidemiology at the regional level. The findings indicate that population growth and disparities in healthcare facilities increase the risk of dengue fever. This implies that more equitable spatial planning of healthcare services, strengthening of primary care, population density control, and increased community participation in sanitation and regular mosquito breeding site eradication are necessary as part of an to reduce dengue fever cases in NTB.

Keywords


Dengue Fever; Spatial Error Model; Queen Contiquity; Virus; Coastal Area.

Full Text:

DOWNLOAD [PDF]

References


Asyary, A. L. (2025). Spatial Analysis on Dengue Fever Vulnerability in the Provinces of South Sulawesi and East Nusa Tenggara in Indonesia. Annals of Global Health, 91(1), 1–13. https://doi.org/10.5334/aogh.4915

Bria, Y. P., Nani, P. A., Siki, Y. C. H., Mamulak, N. M. R., Meolbatak, E. M., & Guntur, R. D. (2025). Leveraging a Random Forest Classifier and SVMSMOTE for an Early-stage Dengue Prediction. Engineering, Technology and Applied Science Research, 15(3), 23436–23442. https://doi.org/10.48084/etasr.10762

Costa, S. D. S. B., Branco, M. D. R. F. C., Vasconcelos, V. V., Queiroz, R. C. D. S., Araujo, A. S., Câmara, A. P. B., ... & Santos, A. M. D. (2021). Autoregressive spatial modeling of possible cases of dengue, chikungunya, and Zika in the capital of Northeastern Brazil. Revista da Sociedade Brasileira de Medicina Tropical, 54, e0223-2021. https://doi.org/10.1590/0037-8682-0223-2021

Elisabeth, A. B., Weraman, P., & Syamruth, Y. K. (2025). Spatial Analysis of Predisposition to Dengue Hemorrhagic Fever (DHF) Incidence in Timor Tengah Utara Regency in 2020-2022. Ascarya: Journal of Islamic Science, Culture, and Social Studies, 5(1), 84-98. https://doi.org/10.53754/iscs.v4i1.732

Fauzi, I. S., Nuraini, N., Ayu, R. W. S., & Lestari, B. W. (2022). Temporal Trend and Spatial Clustering of The Dengue Fever Prevalence in West Java, Indonesia. Heliyon, 8(8), e10350. https://doi.org/10.1016/j.heliyon.2022.e10350

Husnaeni, R. R., Hauliati, S., Sholihah, I., Lasmiani, B. T. A., Hastuti, S. H., & Gazali, M. (2024). Spatial Autoregressive (SAR) Poisson Modeling In Dengue Fever Cases On Lombok Island In 2021. VARIANCE: Journal of Statistics and Its Applications, 6(2), 143-154. https://doi.org/10.30598/variancevol6iss2page143-154

Khaidir, Y., Sastrawan, S., Setiawan, S., Pasca, P., Kesehatan, S. A., Qamarul, U., Badaruddin, H., & Tengah, L. (2024). Efforts to Control Dengue Hemorrhagic Fever (DHF) in Mataram City. Journal of Midwifery and Nursing, 6(1), 7–15. https://www.ejournal.iocscience.org/index.php/JMN/article/view/4267.

Kleden, M. A., Atti, A., & Sinu, E. B. (2025). Spatial Modeling of Climate Change Effects on Dengue Fever Incidence: A Case Study in East Nusa Tenggara. Mathematical Modelling of Engineering Problems, 12(1), 309–328. https://doi.org/10.18280/mmep.120131

Kleden, M. A., Atti, A., & Talahatu, A. H. (2023). Factors Causing Dengue Hemorrhagic Fever (DHF) in Sikka District, East Nusa Tenggara Province. Jambura Journal of Biomathematics, 4(1), 80–87. https://doi.org/10.34312/jjbm.v4i1.19460

Koesmaryono, Y., Sopaheluwakan, A., Hidayati, R., & Dasanto, B. D. (2024). Spatiotemporal characterization of dengue incidence and its correlation to climate parameters in Indonesia. Insects, 15(5), 366. https://doi.org/10.3390/insects15050366

Kutsuna, S., Kato, Y., Moi, M. L., Kotaki, A., Ota, M., Shinohara, K., Kobayashi, T., Yamamoto, K., Fujiya, Y., Mawatari, M., Sato, T., Kunimatsu, J., Takeshita, N., Hayakawa, K., Kanagawa, S., Takasaki, T., & Ohm Agari, N. (2015). Autochthonous Dengue fever, Tokyo, Japan, 2014. Emerging Infectious Diseases, 21(3), 517–520. https://doi.org/10.3201/eid2103.141662

Lun, X., Wang, Y., Zhao, C., Wu, H., Zhu, C., Ma, D., Xu, M., Wang, J., Liu, Q., Xu, L., & Meng, F. (2022). Epidemiological Characteristics and Temporal-Spatial Analysis of Overseas Imported Dengue Fever Cases in Outbreak Provinces of China, 2005–2019. Infectious Diseases of Poverty, 11(1), 1–17. https://doi.org/10.1186/s40249-022-00937-5

Majeed, M. A., Shafri, H. Z. M., Zulkafli, Z., & Wayayok, A. (2023). A Deep Learning Approach for Dengue Fever Prediction in Malaysia Using LSTM with Spatial Attention. International Journal of Environmental Research and Public Health, 20(5). https://doi.org/10.3390/ijerph20054130

Manggo, A. W. (2024). Epidemiological Description Of The Spread Of Dengue Fever In The Work Area Of The Sikumana Health Center , Maulafa District , Kupang City Period 2017 - 2021. Ejurnal Undana, 6(3), 122–132. https://doi.org/10.35508/tjph.v6i3.6487

Mukolwe, J. A., Mutinda, J. K., & Langat, A. K. (2025). Spatial Epidemiology Based on the Analysis of COVID-19 in Africa. Scientific African, 27(January), e02557. https://doi.org/10.1016/j.sciaf.2025.e02557

Pakaya, R., Daniel, D., Widayani, P., & Utarini, A. (2023). Spatial Model of Dengue Hemorrhagic Fever (DHF) risk: Scoping Review. BMC Public Health, 23(1), 1–16. https://doi.org/10.1186/s12889-023-17185-3

Primadianti, N., & Sugiyanto, C. (2020). Ketimpangan Regional, Pertumbuhan Ekonomi Pro Poor, Dan Kemiskinan Di Nusa Tenggara Barat. Jurnal Dinamika Ekonomi Pembangunan, 3(1), 1–20. https://doi.org/10.14710/jdep.3.1.1-20

Salim, M. F., Satoto, T. B. T., & Danardono. (2025). Understanding local determinants of dengue: a geographically weighted panel regression approach in Yogyakarta, Indonesia. Tropical Medicine and Health, 53(1), 54. https://doi.org/10.1186/s41182-025-00734-4

Sarker, I., Karim, M. R., E‐Barket, S., & Hasan, M. (2024). Dengue fever mapping in Bangladesh: a spatial modeling approach. Health Science Reports, 7(6), e2154. https://doi.org/10.1002/hsr2.2154

Soraya, S., Herawati, B. C., & Negara, H. R. P. (2021). Economic Growth Modelling in West Nusa Tenggara Using Bayesian Spatial Model Approach. JTAM (Jurnal Teori Dan Aplikasi Matematika), 5(1), 80. https://doi.org/10.31764/jtam.v5i1.3357

Soraya, S., Rahima, P., Primajati, G., & Nurhidayati, M. (2024). Forecasting Tourist Visits During The Covid-19 Pandemic and MotoGP Events Using The Sarima Method. 7(3), 235–244. https://doi.org/10.12962/j27213862.v7i3.20139

Taryono, A. P. N., Ispriyanti, D., & Prahutama, A. (2018). Analisis Faktor-Faktor yang Mempengaruhi Penyebaran Penyakit Demam Berdarah Dengue (Dbd) di Provinsi Jawa Tengah dengan Metode Spatial Autoregressive Model dan Spatial Durbin Model. Indonesian Journal of Applied Statistics, 1(1), 1. https://doi.org/10.13057/ijas.v1i1.24026

Yani, A. (2024). The influence of environmental factors on the development of dengue fever. The International Science of Health Journal, 2(4), 116-123. https://doi.org/10.59680/ishel.v2i4.1569

Zhao, R., & Liang, C. (2024). Geospatial-temporal Analysis of Dengue Fever Based on the Bayesian Spatiotemporal Model. Sensors and Materials, 36(10), 4361–4380. https://doi.org/10.18494/SAM5232




DOI: https://doi.org/10.31764/jtam.v10i1.33477

Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Siti Soraya, Istin Fitriani Aziza, Rizwan Arizandi, Kirti Verma, Widani Darma Isasi, Suliadi Firdaus Sufahani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: