Modeling Zero-Inflated Poisson Invers Gaussian Regression Bayesian Approach

Berliana Jannah, Ni Wayan Surya Wardhani, Eni Sumarminingsih

Abstract


Deaths due to dengue hemorrhagic fever (DHF) remains one of the most pressing public health issues in Indonesia, especially in urban areas such as Semarang City, which has a high population density and diverse environmental conditions that potentially increase the risk of transmission and death from DHF. This study aims to model the number of DHF in Semarang City using a Bayesian-based Zero-Inflated Poisson Inverse Gaussian Regression (ZIPIGR) approach. The research data was obtained from the Semarang City Health Office and the Central Statistics Agency (BPS) in 2024, with the response variable being the number of DHF deaths and five predictor variables. The data showed overdispersion and a high proportion of zeros (around 50%), indicating the presence of excess zeros in count data with a small sample size. The Bayesian ZIPIGR method was chosen because it can produce more stable parameter estimates than classical methods such as Maximum Likelihood Estimation (MLE), especially for data with complex likelihood functions, small sample sizes, and many zero values. Parameter estimation was performed using Gibbs Sampling simulation in the Markov Chain Monte Carlo (MCMC) framework. The results show that the Bayesian ZIPIGR model performs better than the MLE ZIPIGR model based on the Root Mean Square Error (RMSE) value. Factors that significantly influence DHF mortality are population density, slum area, and number of health workers. These results confirm that regional density and health worker capacity play an important role in increasing the risk of DHF mortality in urban areas. The developed model has been proven to be highly accurate in modeling count data with excess zero characteristics and makes an important contribution to health policy formulation. In practical terms, this model can be used to improve early warning systems and DHF control strategies in densely populated urban areas such as the city of Semarang.

Keywords


ZIPIGR; Overdispersion; Bayesian; Excess Zero; Gibbs Sampling.

Full Text:

DOWNLOAD [PDF]

References


Abdulhafedh, A. (2023). Incorporating Zero-Inflated Poisson (ZIP) Regression Model in Crash Frequency Analysis. International Journal of Novel Research Interdisciplinary Studies, 10(1), 6–18. https://doi.org/10.5281/zenodo.7632596

Agresti, A. (2019). An Introduction to Categorical Data Analysis (3rd ed.). John Wiley & Sons, Inc. http://www.wiley.com/go/wsps

Akinkunmi, M. (2019). Introduction To Statistics Using R (1st ed.). Springer International Publisher. https://id.scribd.com/document/797441439/Introduction-to-Statistics-Using-r

Al-Sharoot, M. H., & Al-Badry, A. O. (2024). Estimating the survival function of three parameters Lindley distribution for patients with COVID-19 by using MLE and Bayesian estimates. Warith Scientific Journal, 6(8), 1017–1030. https://iasj.rdd.edu.iq/journals/uploads/2025/01/25/b16f1b3ec9f6162d7854421a793eb6b7.pdf

Amalia, R. N., Sadik, K., & Notodiputro, K. A. (2021). A Study of ZIP and ZINB Regression Modeling for Count Data with Excess Zeros. Journal of Physics: Conference Series, 1863(1), 1–12. https://doi.org/10.1088/1742-6596/1863/1/012022

Aswi, A., Astuti, S. A., & Sudarmin, S. (2022). Evaluating the Performance of Zero-Inflated and Hurdle Poisson Models for Modeling Overdispersion in Count Data. Inferensi, 5(1), 17–22. https://doi.org/10.12962/j27213862.v5i1.12422

Azizan, N. H., Mahmud, Z., Rambli, A., & Hafizah Azizan, N. (2020). Rasch Rating Scale Item Estimates using Maximum Likelihood Approach: Effects of Sample Size on the Accuracy and Bias of the Estimates. International Journal of Advanced Science and Technology, 29(4s), 2526–2531. https://www.researchgate.net/publication/343152554

Bektashi, X., Rexhepi, S., & Limani–Bektashi, N. (2022). Dispersion of Count Data: A Case Study of Poisson Distribution and Its Limitations. Asian Journal of Probability and Statistics, 19(2), 18–28. https://doi.org/10.9734/ajpas/2022/v19i230464

Bimali, M., Ounpraseuth, S. T., & Williams, D. K. (2021). Impact of magnitude of zero inflation of covariates on statistical inference and model selection. Journal of Statistics Applications and Probability, 10(2), 287–292. https://doi.org/10.18576/jsap/100201

Chakraborty, S., & Biswas, S. C. (2024). Modelling Zero-Inflated Over Dispersed Dengue Data via Zero-Inflated Poisson Inverse Gaussian Regression Model: A Case Study of Bangladesh. Acta Scientifica Malaysia, 8(1), 11–14. https://doi.org/10.26480/asm.01.2024.11.14

Handarzeni, S. A. (2022). Modeling of Tuberculosis Cases in Sumatra Region using Poisson Inverse Gaussian Regression. JSDS: Journal of Statistics and Data Science, 1(2), 36–43. https://doi.org/10.2991/assehr.k.201010.007

Hespanhol, L., Vallio, C. S., Costa, L. M., & Saragiotto, B. T. (2019). Understanding and interpreting confidence and credible intervals around effect estimates. Brazilian Journal of Physical Therapy, 23(4), 290–301. https://doi.org/10.1016/j.bjpt.2018.12.006

Hilbe, J. M. (2014). Modeling Count Data (1st ed.). Cambridge University Press. www.cambridge.org/9781107611252

Karlis, D., & Xekalaki, E. (2005). Mixed Poisson Distributions. International Statistical Review, 73(1), 35–58. http://www.jstor.org/stable/25472639

Kemenkes RI. (2022). Membuka Lembaran Baru Untuk Hidup Sejahtera. Laporan Tahunan 2022 Demam Berdarah Dengue.

Kyriazos, T., & Poga, M. (2023). Dealing with Multicollinearity in Factor Analysis: The Problem, Detections, and Solutions. Open Journal of Statistics, 13(3), 404–424. https://doi.org/10.4236/ojs.2023.133020

Lambert, D. (1992). Zero-inflated poisson regression, with an application to defects in manufacturing. Technometrics, 34(1), 1–14. https://doi.org/10.2307/1269547

Lijoi, A., Mena, R. H., & Prünster, I. (2005). Hierarchical mixture modeling with normalized inverse-Gaussian priors. Journal of the American Statistical Association, 100(472), 1278–1291. https://doi.org/10.1198/016214505000000132

Liu, H., & Powers, D. A. (2012). Bayesian Inference for zero inflated poisson regression models. Journal of Statistics : Advance in Theory and Aplications, 7(2), 155–188. https://www.researchgate.net/publication/265778813_Bayesian_inference_for_zero-inflated_Poisson_regression_models

Payne, E. H., Hardin, J. W., Egede, L. E., Ramakrishnan, V., Selassie, A., & Gebregziabher, M. (2017). Approaches for dealing with various sources of overdispersion in modeling count data: Scale adjustment versus modeling. Statistical Methods in Medical Research, 26(4), 1802–1823. https://doi.org/10.1177/0962280215588569

Psutka, J. V., & Psutka, J. (2019). Sample size for maximum-likelihood estimates of Gaussian model depending on dimensionality of pattern space. Pattern Recognition, 91(2), 25–33. https://doi.org/10.1016/j.patcog.2019.01.046

Purhadi, & Ermawati. (2021). Bivariate Zero-Inflated Poisson Inverse Gaussian Regression Model and Its Application. International Journal on Advanced Science Engineering Information Technology, 11(6), 2407–2415. https://doi.org/10.18517/ijaseit.11.6.14217

Putri, G. N., Nurrohmah, S., & Fithriani, I. (2020). Comparing Poisson-Inverse Gaussian Model and Negative Binomial Model on case study: Horseshoe crabs data. Basic and Applied Sciences Interdisciplinary Conference 2017, 1442(1). https://doi.org/10.1088/1742-6596/1442/1/012028

Rahayu, L. P., Sadik, K., & Indahwati. (2016). Overdispersion study of poisson and zero-inflated poisson regression for some characteristics of the data on lamda, n, p. International Journal of Advances in Intelligent Informatics, 2(3), 140–148. https://doi.org/10.26555/ijain.v2i3.73

Shukla, G., Kumar, V., Shukla, S., & Giri Goswami, M. (2017). Comparison between Bayesian and Maximum Likelihood Estimation of Scale Parameter in Generalized Gamma Type Distribution with Known Shape Parameters under Different Loss Functions. International Journal on Emerging Technologies (Special Issue NCETST-2017), 8(1), 288–294. www.researchtrend.net

Weni Utomo, C. R., Efendi, A., & Wardhani, N. W. S. (2025). Simulation Study of Bayesian Zero Inflated Poisson Regression. CAUCHY: Jurnal Matematika Murni Dan Aplikasi, 10(1), 213–223. https://doi.org/10.18860/ca.v10i1.30207

Xu, A., Wang, B., Zhu, D., Pang, J., & Lian, X. (2025). Bayesian Reliability Assessment of Permanent Magnet Brake Under Small Sample Size. IEEE Transactions on Reliability, 74(1), 2107–2117. https://doi.org/10.1109/TR.2024.3381072

Zha, L., Lord, D., & Zou, Y. (2016). The Poisson inverse Gaussian (PIG) generalized linear regression model for analyzing motor vehicle crash data. Journal of Transportation Safety and Security, 8(1), 18–35. https://doi.org/10.1080/19439962.2014.977502




DOI: https://doi.org/10.31764/jtam.v10i1.34068

Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Berliana Jannah, Ni Wayan Surya Wardhani, Eni Sumarminingsih

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: