Modeling Zero-Inflated Poisson Invers Gaussian Regression Bayesian Approach
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Abdulhafedh, A. (2023). Incorporating Zero-Inflated Poisson (ZIP) Regression Model in Crash Frequency Analysis. International Journal of Novel Research Interdisciplinary Studies, 10(1), 6–18. https://doi.org/10.5281/zenodo.7632596
Agresti, A. (2019). An Introduction to Categorical Data Analysis (3rd ed.). John Wiley & Sons, Inc. http://www.wiley.com/go/wsps
Akinkunmi, M. (2019). Introduction To Statistics Using R (1st ed.). Springer International Publisher. https://id.scribd.com/document/797441439/Introduction-to-Statistics-Using-r
Al-Sharoot, M. H., & Al-Badry, A. O. (2024). Estimating the survival function of three parameters Lindley distribution for patients with COVID-19 by using MLE and Bayesian estimates. Warith Scientific Journal, 6(8), 1017–1030. https://iasj.rdd.edu.iq/journals/uploads/2025/01/25/b16f1b3ec9f6162d7854421a793eb6b7.pdf
Amalia, R. N., Sadik, K., & Notodiputro, K. A. (2021). A Study of ZIP and ZINB Regression Modeling for Count Data with Excess Zeros. Journal of Physics: Conference Series, 1863(1), 1–12. https://doi.org/10.1088/1742-6596/1863/1/012022
Aswi, A., Astuti, S. A., & Sudarmin, S. (2022). Evaluating the Performance of Zero-Inflated and Hurdle Poisson Models for Modeling Overdispersion in Count Data. Inferensi, 5(1), 17–22. https://doi.org/10.12962/j27213862.v5i1.12422
Azizan, N. H., Mahmud, Z., Rambli, A., & Hafizah Azizan, N. (2020). Rasch Rating Scale Item Estimates using Maximum Likelihood Approach: Effects of Sample Size on the Accuracy and Bias of the Estimates. International Journal of Advanced Science and Technology, 29(4s), 2526–2531. https://www.researchgate.net/publication/343152554
Bektashi, X., Rexhepi, S., & Limani–Bektashi, N. (2022). Dispersion of Count Data: A Case Study of Poisson Distribution and Its Limitations. Asian Journal of Probability and Statistics, 19(2), 18–28. https://doi.org/10.9734/ajpas/2022/v19i230464
Bimali, M., Ounpraseuth, S. T., & Williams, D. K. (2021). Impact of magnitude of zero inflation of covariates on statistical inference and model selection. Journal of Statistics Applications and Probability, 10(2), 287–292. https://doi.org/10.18576/jsap/100201
Chakraborty, S., & Biswas, S. C. (2024). Modelling Zero-Inflated Over Dispersed Dengue Data via Zero-Inflated Poisson Inverse Gaussian Regression Model: A Case Study of Bangladesh. Acta Scientifica Malaysia, 8(1), 11–14. https://doi.org/10.26480/asm.01.2024.11.14
Handarzeni, S. A. (2022). Modeling of Tuberculosis Cases in Sumatra Region using Poisson Inverse Gaussian Regression. JSDS: Journal of Statistics and Data Science, 1(2), 36–43. https://doi.org/10.2991/assehr.k.201010.007
Hespanhol, L., Vallio, C. S., Costa, L. M., & Saragiotto, B. T. (2019). Understanding and interpreting confidence and credible intervals around effect estimates. Brazilian Journal of Physical Therapy, 23(4), 290–301. https://doi.org/10.1016/j.bjpt.2018.12.006
Hilbe, J. M. (2014). Modeling Count Data (1st ed.). Cambridge University Press. www.cambridge.org/9781107611252
Karlis, D., & Xekalaki, E. (2005). Mixed Poisson Distributions. International Statistical Review, 73(1), 35–58. http://www.jstor.org/stable/25472639
Kemenkes RI. (2022). Membuka Lembaran Baru Untuk Hidup Sejahtera. Laporan Tahunan 2022 Demam Berdarah Dengue.
Kyriazos, T., & Poga, M. (2023). Dealing with Multicollinearity in Factor Analysis: The Problem, Detections, and Solutions. Open Journal of Statistics, 13(3), 404–424. https://doi.org/10.4236/ojs.2023.133020
Lambert, D. (1992). Zero-inflated poisson regression, with an application to defects in manufacturing. Technometrics, 34(1), 1–14. https://doi.org/10.2307/1269547
Lijoi, A., Mena, R. H., & Prünster, I. (2005). Hierarchical mixture modeling with normalized inverse-Gaussian priors. Journal of the American Statistical Association, 100(472), 1278–1291. https://doi.org/10.1198/016214505000000132
Liu, H., & Powers, D. A. (2012). Bayesian Inference for zero inflated poisson regression models. Journal of Statistics : Advance in Theory and Aplications, 7(2), 155–188. https://www.researchgate.net/publication/265778813_Bayesian_inference_for_zero-inflated_Poisson_regression_models
Payne, E. H., Hardin, J. W., Egede, L. E., Ramakrishnan, V., Selassie, A., & Gebregziabher, M. (2017). Approaches for dealing with various sources of overdispersion in modeling count data: Scale adjustment versus modeling. Statistical Methods in Medical Research, 26(4), 1802–1823. https://doi.org/10.1177/0962280215588569
Psutka, J. V., & Psutka, J. (2019). Sample size for maximum-likelihood estimates of Gaussian model depending on dimensionality of pattern space. Pattern Recognition, 91(2), 25–33. https://doi.org/10.1016/j.patcog.2019.01.046
Purhadi, & Ermawati. (2021). Bivariate Zero-Inflated Poisson Inverse Gaussian Regression Model and Its Application. International Journal on Advanced Science Engineering Information Technology, 11(6), 2407–2415. https://doi.org/10.18517/ijaseit.11.6.14217
Putri, G. N., Nurrohmah, S., & Fithriani, I. (2020). Comparing Poisson-Inverse Gaussian Model and Negative Binomial Model on case study: Horseshoe crabs data. Basic and Applied Sciences Interdisciplinary Conference 2017, 1442(1). https://doi.org/10.1088/1742-6596/1442/1/012028
Rahayu, L. P., Sadik, K., & Indahwati. (2016). Overdispersion study of poisson and zero-inflated poisson regression for some characteristics of the data on lamda, n, p. International Journal of Advances in Intelligent Informatics, 2(3), 140–148. https://doi.org/10.26555/ijain.v2i3.73
Shukla, G., Kumar, V., Shukla, S., & Giri Goswami, M. (2017). Comparison between Bayesian and Maximum Likelihood Estimation of Scale Parameter in Generalized Gamma Type Distribution with Known Shape Parameters under Different Loss Functions. International Journal on Emerging Technologies (Special Issue NCETST-2017), 8(1), 288–294. www.researchtrend.net
Weni Utomo, C. R., Efendi, A., & Wardhani, N. W. S. (2025). Simulation Study of Bayesian Zero Inflated Poisson Regression. CAUCHY: Jurnal Matematika Murni Dan Aplikasi, 10(1), 213–223. https://doi.org/10.18860/ca.v10i1.30207
Xu, A., Wang, B., Zhu, D., Pang, J., & Lian, X. (2025). Bayesian Reliability Assessment of Permanent Magnet Brake Under Small Sample Size. IEEE Transactions on Reliability, 74(1), 2107–2117. https://doi.org/10.1109/TR.2024.3381072
Zha, L., Lord, D., & Zou, Y. (2016). The Poisson inverse Gaussian (PIG) generalized linear regression model for analyzing motor vehicle crash data. Journal of Transportation Safety and Security, 8(1), 18–35. https://doi.org/10.1080/19439962.2014.977502
DOI: https://doi.org/10.31764/jtam.v10i1.34068
Refbacks
- There are currently no refbacks.
Copyright (c) 2026 Berliana Jannah, Ni Wayan Surya Wardhani, Eni Sumarminingsih

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office:


















2.jpg)
