Modular Coloring of Comb Graph, Lintang Graph, and Butterfly Graph

Deby Debora Pramudya, Yudhi Yudhi, Fransiskus Fran

Abstract


Given any graph G that contains no isolated vertices, a labeling c is a mapping from its vertex set to the set of integers modulo k (c:V(G)→Z_k) for k≥2, adjacent vertices are allowed to share the same color. The number of color labels of a vertex v (σ(v)), is the number of color labels of the neighborhood of vertex v (N(v)). A labeling c is a modular k-coloring of G if σ(x) ≠ σ(y) in Z_k for all vertices x,y that are neighbors in G. Denoted as mc(G), the modular chromatic number of G is defined as the least integer k that allows for a modular k-coloring of the graph. This research seeks to ascertain the modular chromatic number of the comb graph Cb_n, the lintang graph L_n, and the butterfly graph BF(n). The first step in this research is to define the labeling c, then determine (N(v)). Next, determine the number of color labels from the neighborhood at each vertex with σ(x)≠σ(y) in Z_k for x,y being all neighboring vertices. After the condition σ(x)≠σ(y) in Z_k is satisfied, ascertain mc(G). By performing the same steps on each graph with increasingly larger values of n, a modular coloring pattern will emerge, which is used to formulate the modular coloring formula. This process concludes with the formulation of a modular coloring formula and the determination of the modular chromatic number for comb graph Cb_n, lintang graph L_n, and butterfly graph BF(n). Based on this research, mc(Cb_n)=2, mc(L_n)=2, and mc(BF(n))=3 are obtained.

Keywords


c-labeling; Modular k-coloring; Modular chromatic numbers.

Full Text:

DOWNLOAD [PDF]

References


Akram, M., & Nawaz, S. (2015). Operations on Soft Graphs. Fuzzy Information and Engineering, 7(4), 423–449. https://doi.org/10.1016/j.fiae.2015.11.003

Artes, Jr., R. G., & Dignos, R. D. (2015). Tree Cover of the Join and the Corona of Graphs. Applied Mathematical Sciences, 9(12), 597–602. https://doi.org/10.12988/ams.2015.410854

Azizin, A. M. (2024). Dominance Number of the Graph Resulting from Comb Operation between Complete Graph and Wheel Graph. Journal of Mathematics and Mathematics Education, 14(01), 24–34. https://doi.org/10.20961/jmme.v14i1.79749

Barik, S., Kalita, D., Pati, S., & Sahoo, G. (2018). Spectra of Graphs Resulting from Various Graph Operations and Products: A Survey. Special Matrices, 6(1), 323–342. https://doi.org/10.1515/spma-2018-0027

Basavanagoud, B., Policepatil, S., & Jakkannavar, P. (2021). Integrity of Graph Operations. Transactions on Combinatorics, 10(3), 171–185. https://doi.org/10.22108/toc.2021.121736.1710

De, N., Nayeem, A., & Pal, A. (2016). The F-coindex of Some Graph Operations. SpringerPlus, 5(221), 1–13. https://doi.org/10.1186/s40064‑016‑1864‑7

Fran, F., Yundari, Hanssen, C., & Nurliantika. (2025). The Complexity of Triangular Book Graph, Butterfly Graph, Lintang Graph, and Cycle Books Graph. 3142(1), 020088. https://doi.org/10.1063/5.0262263

Gross, J. L., Yellen, J., & Anderson, M. (2018). Graph Theory and its Applications. Chapman and Hall/CRC.

Gutman, I., Furtula, B., Vukicevic, Z. K., & Popivod, G. (2015). On Zagreb Indices and Coindices. Match Communications in Mathematical and in Computer Chemistry, 5–16. https://scidar.kg.ac.rs/handle/123456789/17391

Koh, K.-M., Dong, F., Ng, K. L., & Tay, E. G. (2015). Graph Theory: Undergraduate Mathematics. World Scientific Publishing Company.

Kusumaningrum, F. A., & Rahadjeng, B. (2021). Modular Chromatic Numbers on Some Subclasses of Graphs. MATHunesa: Jurnal Ilmiah Matematika, 9(2), 302–310. https://doi.org/10.26740/mathunesa.v9n2.p302-310

M. Shalaan, M., & A. Omran, A. (2020). Co-Even Domination Number in Some Graphs. IOP Conference Series: Materials Science and Engineering, 928(4), 042015. https://doi.org/10.1088/1757-899X/928/4/042015

Mohideen, B. A. (2017). A New Approach to Complete Graph. New Trends in Mathematical Science, 1(5), 264–268. https://doi.org/10.20852/ntmsci.2017.145

Nicholas, T. (2017). Modular Colorings of Cycle Related Graphs. Global Journal of Pure and Applied Mathematics, 13(7), 3779–3788. https://www.ripublication.com/gjpam17/gjpamv13n7_74.pdf

Okamoto, F., Salehi, E., & Zhang, P. (2010). A Checkerboard Problem and Modular Colorings of Graph. Bulletin of the Institute of Combinatorics and Its Applications, 58, 29–47. https://www.researchgate.net/profile/Ebrahim-Salehi-2/publication/265682124_A_checkerboard_problem_and_modular_colorings_of_graphs/links/54ac37c70cf2479c2ee78a19/A-checkerboard-problem-and-modular-colorings-of-graphs.pdf

Pamungkas, P. G. (2024). Modular Coloring on Several Classes of Tree Graphs. MATHunesa: Jurnal Ilmiah Matematika, 12(3), 549–557. https://ejournal.unesa.ac.id/index.php/mathunesa/article/view/60379/46628

Ponraj, R., Gayathri, A., & Somasundaram, S. (2021). Pair Difference Cordiality of Some Snake and Butterfly Graphs. Journal of Algorithms and Computation, 53(1), 149–163. https://doi.org/10.22059/jac.2021.81649

Rajagaspar, M., & Senthil, S. (2022). Applications of Graph Coloring Using Vertex Coloring. Journal of Algebraic Statistics, 13(2), 3447–3454. https://publishoa.com/index.php/journal/article/view/1082/936

Sumathi, P. (2023). Modular Coloring On Inflated Graphs. Industrial Engineering Journal, 52(4), 112–120. https://cknc.edu.in/wp-content/uploads/2024/08/14-Dr.-PS-IEJ-2023-0970-2555.pdf

Sumathi, P., & Tamilselvi, S. (2022). Modular Chromatic Number of Certain Cyclic Graphs. Journal Of Algebraic Statistics, 13(3). https://www.publishoa.com/index.php/journal/article/view/1263/1084

Sumathi, P., & Tamilselvi, S. (2023). The Modular Chromatic Number of the Corona Product of a Generalized Jahangir Graph. Indian Journal Of Science And Technology, 16(46), 4309–4327. https://doi.org/10.17485/IJST/v16i46.2028

Sumathi, P., & Tamilselvi, S. (2024). Modular Chromatic Number of Snow Graphs of Some Cycle Related Graph and Its Extended Snow Graph. Journal of Computational Analysis & Applications, 33(5). https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=15211398&AN=183931077&h=uG8pZ3MVC9xAHC0YSkhYkft5k18ReCQjHNT%2BZgs99dvUdP%2Faysx9kNXNFdz93TfXrJSjLL6zLV0UL%2BN4dZtaow%3D%3D&crl=c

Tarawneh, I., Hasni, R., & Ahmad, A. (2016). On the Edge Irregularity Strength of Corona Product of Cycle with Isolated Vertices. AKCE International Journal of Graphs and Combinatorics, 13(3), 213–217. https://doi.org/10.1016/j.akcej.2016.06.010

Upadhyay, S. N., D’souza, S., Nayak, S., Bhat, P. G., & Shankaran, P. (2020). Characterization of Generalized Complements of a Graph. Advances in Mathematics: Scientific Journal, 9(9), 7093–7099. https://doi.org/10.37418/amsj.9.9.59

Veeraragavan, I., & Arul, S. M. (2024). Dominator Sum Coloring Algorithm for Comb-Double Comb Graph. International Journal of Mathematics and Computer Science, 19(4), 1427–1430. https://future-in-tech.net/19.4/R-Veeraragavan.pdf

Wijayanti, R., Maryono, D., & Kom, M. (2016). Maximum and Minimum Values of Labeling-γ on Lintang Graphs. Konferensi Nasional Penelitian Matematika dan Pembelajarannya, 882–891. https://proceedings.ums.ac.id/knpmp/article/view/2579

Zhang, X., Cancan, M., Nadeem, M. F., & Imran, M. (2020). Edge Irregularity Strength of Certain Families of Comb Graph. PROYECCIONES : Journal of Mathematics, 39(4), 787–797. https://doi.org/10.22199/issn.0717-6279-2020-04-0049




DOI: https://doi.org/10.31764/jtam.v10i1.34697

Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Deby Debora Pramudya, Yudhi, Fransiskus Fran

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: