Analysis Comparison of BiLSTM and BiGRU Models for Aircraft Visibility Prediction
Abstract
Severe weather conditions such as fog and heavy precipitation pose significant threats to aviation safety. Accurate prediction of aircraft visibility is therefore essential to support operational decision-making and reduce the likelihood of accidents. This study aims to compare and evaluate the performance of two bidirectional deep learning models, BiLSTM and BiGRU, in predicting aircraft visibility using historical meteorological data from BMKG Juanda Sidoarjo. The novelty of this research lies in applying and comparing bidirectional recurrent architectures for visibility prediction, an approach rarely explored in aviation meteorology, to assess their capability in capturing temporal dependencies within time-series visibility patterns. Both models were trained using hyperparameter tuning, with the best configuration obtained from a 24-hour input window, batch size of 32, 64 neurons, a dropout rate of 0.1, and 100–200 epochs. The dataset was divided into training and testing sets (80:20), and model performance was evaluated using Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE) to assess both predictive accuracy and computational efficiency. The results indicate that while BiLSTM achieved slightly higher accuracy, BiGRU demonstrated superior overall efficiency, obtaining competitive error metrics (MSE = 1.50 × 10⁶, RMSE = 1,223.5, MAPE = 19.35%) compared to BiLSTM (MSE = 1.58 × 10⁶, RMSE = 1,258.1, MAPE = 19.50%). BiGRU’s advantage lies in its simpler structure and faster computation, which reduce training complexity without sacrificing forecast accuracy. Overall, this research contributes to the development of efficient bidirectional time-series models for aviation meteorology, offering a practical framework for real-time visibility forecasting in computationally limited environments. The balance between accuracy, speed, and model simplicity makes BiGRU a more scalable and applicable choice for enhancing flight safety operations.
Keywords
Full Text:
DOWNLOAD [PDF]References
Adukwu, S., James, T. O., & Onwuka, G. I. (2024). Effects of Human Factors and Some Selected Weather Variables on Plane Crash. International Journal of Science for Global Sustainability, 10(2), 190–196. https://doi.org/10.57233/ijsgs.v10i2.665
Akintunde, E. A., Fada, S. J., Adamu, U. M., Goyol, S. S., Bombom, L. S., & Nyango, K. C. (2025). Weather-Induced Flight Disruptions: Analysing Trends, Implications and Mitigation Strategies at the Jos Airport, Plateau State, Nigeria. African Journal of Geographical Sciences, 5, 1 & 2. https://doi.org/10.5281/zenodo.15010571
AlBesher, Q., & AlMusallam, S. (2023). Examining the role of weather in aircraft accidents. International Journal of Innovative Science and Research Technology, 8(12), Article 705. https://doi.org/10.5281/zenodo.10405099
Boutle, I., Angevine, W., Bao, J.-W., Bergot, T., Bhattacharya, R., Bott, A., Ducongé, L., Forbes, R., Goecke, T., Grell, E., Hill, A., Igel, A. L., Kudzotsa, I., Lac, C., Maronga, B., Romakkaniemi, S., Schmidli, J., Schwenkel, J., Steeneveld, G.-J., & Vié, B. (2022). Demistify: A large-eddy simulation (LES) and single-column model (SCM) intercomparison of radiation fog. Atmospheric Chemistry and Physics, 22(1), 319–333. https://doi.org/10.5194/acp-22-319-2022
Chen, C.-J., Huang, C.-N., & Yang, S.-M. (2023). Aviation visibility forecasting by integrating Convolutional Neural Network and long short-term memory network. Journal of Intelligent & Fuzzy Systems, 45(3), 5007–5020. https://doi.org/10.3233/JIFS-230483
Chen, J., Yan, M., Qureshi, M. R. H., & Geng, K. (2023). Estimating the visibility in foggy weather based on meteorological and video data: A Recurrent Neural Network approach. IET Signal Processing, 17(1). https://doi.org/10.1049/sil2.12164
DetikCom. (2024, February 18). 5 pesawat mendarat di Bandara Juanda sempat dialihkan gegara cuaca buruk [DetikJatim]. Detik. https://www.detik.com/jatim/berita/d-7150488/5-pesawat-mendarat-di-bandara-juanda-sempat-dialihkan-gegara-cuaca-buruk
He, D., Wang, Y., Tang, Y., Kong, D., Yang, J., Zhou, W., Li, H., & Wang, F. (2024). Improvement in the Forecasting of Low Visibility over Guizhou, China, Based on a Multi-Variable Deep Learning Model. Atmosphere, 15(7), 752. https://doi.org/10.3390/atmos15070752
Kharisma, A., Fadhillah, M., & Haryanto, Y. D. (2025). Advancing aviation meteorology: Airport visibility prediction using random forest regressor on integrated METAR parameters. Jurnal Ilmu dan Inovasi Fisika, 9(2), 62–72. https://doi.org/10.24198/jiif.v9i2.65464
Li, X., & Zhang, X. (2023). A comparative study of statistical and machine learning models on carbon dioxide emissions prediction of China. Environmental Science and Pollution Research, 30(55), 117485-117502. https://doi.org/10.1007/s11356-023-30428-5
Li, X., Zhang, Y., Jin, J., Sun, F., Li, N., & Liang, S. (2023). A model of integrating convolution and BiGRU dual-channel mechanism for Chinese medical text classifications. PLOS ONE, 18(3), e0282824. https://doi.org/10.1371/journal.pone.0282824
Montaño Moreno, J., Palmer Pol, A., Sesé Abad, A., & Cajal Blasco, B. (2013). Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema, 4(25), 500–506. https://doi.org/10.7334/psicothema2013.23
Moonlight, L. S., Harianto, B. B., Musadek, A., Sukma, M. M., & Arifianto, T. (2023). Airport Visibility Prediction System to Improve Aviation Safety. In B. Bagus Harianto, R. Mahmud, A. Anas Arifin, E. Subagyo, A. Mu’ti Sazali, & Y. Chrisnawati (Eds.), Proceedings of the International Conference on Advance Transportation, Engineering, and Applied Science (ICATEAS 2022) (pp. 199–210). Atlantis Press International BV. https://doi.org/10.2991/978-94-6463-092-3_18
Pranida, S. Z., & Kurniawardhani, A. (2022). Sentiment Analysis of Expedition Customer Satisfaction using BiGRU and BiLSTM. Indonesian Journal of Artificial Intelligence and Data Mining, 5(1), 44. https://doi.org/10.24014/ijaidm.v5i1.17361
Qin, D., Li, Y., Chen, W., Zhu, Z., Wen, Q., Sun, L., Pinson, P., & Wang, Y. (2024). Evolving Multi-Scale Normalization for Time Series Forecasting under Distribution Shifts (arXiv:2409.19718). arXiv. https://doi.org/10.48550/arXiv.2409.19718
Raju, V. N. G., Lakshmi, K. P., Jain, V. M., Kalidindi, A., & Padma, V. (2020). Study the Influence of Normalization/Transformation process on the Accuracy of Supervised Classification. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), 729–735. https://doi.org/10.1109/ICSSIT48917.2020.9214160
Shaikh, Z. M., & Ramadass, S. (2024). Unveiling deep learning powers: LSTM, BiLSTM, GRU, BiGRU, RNN comparison. Indonesian Journal of Electrical Engineering and Computer Science, 35(1), 263. https://doi.org/10.11591/ijeecs.v35.i1.pp263-273
Shankar, A., & Sahana, B. C. (2024). Efficient prediction of runway visual range by using a hybrid CNN-LSTM network architecture for aviation services. Theoretical and Applied Climatology, 155(3), 2215–2232. https://doi.org/10.1007/s00704-023-04751-3
Shi, J., Jain, M., & Narasimhan, G. (2022). Time Series Forecasting (TSF) Using Various Deep Learning Models (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2204.11115
Singh, S. P., Shankar, A., & Sahana, B. C. (2024). Prediction of Low-Visibility Events by Integrating the Potential of Persistence and Machine Learning for Aviation Services. MAUSAM, 75(4), 977–992. https://doi.org/10.54302/mausam.v75i4.6624
Skybrary. (n.d.). Visual Meteorological Conditions (VMC) | SKYbrary Aviation Safety. Retrieved September 2, 2025, from https://skybrary.aero/articles/visual-meteorological-conditions-vmc
Unlu, A., & Peña, M. (2025). Comparative Analysis of Hybrid Deep Learning Models for Electricity Load Forecasting During Extreme Weather. Energies, 18(12), 3068. https://doi.org/10.3390/en18123068
Wang, F., Yuan, J., Liu, X., Wang, P., Xu, M., Li, X., & Li, H. (2024). Impacts of Flight Operations on the Risk of Runway Excursions. Applied Sciences, 14(3), 975. https://doi.org/10.3390/app14030975
Wang, J. (2025). Data interpolation methods with the UNet-based model for weather forecast. International Journal of Data Science and Analytics, 20(3), 2525–2538. https://doi.org/10.1007/s41060-024-00611-z
Wang, S., Shao, C., Zhang, J., Zheng, Y., & Meng, M. (2022). Traffic flow prediction using bi-directional gated recurrent unit method. Urban Informatics, 1(1), 16. https://doi.org/10.1007/s44212-022-00015-z
DOI: https://doi.org/10.31764/jtam.v10i1.34698
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Nayla Fitriyatus Saidah, Nurissaidah Ulinnuha, Yuniar Farida

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office:


















2.jpg)
