Fuzzy Support Vector Machine Using Function Linear Membership and Exponential with Mahanalobis Distance
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
An, W., & Liang, M. (2013). Fuzzy support vector machine based on within-class scatter for classification problems with outliers or noises. Neurocomputing, 110, 101–110. https://doi.org/10.1016/j.neucom.2012.11.023
Anzid, H., Goic, G. Le, Bekkari, A., Mansouri, A., & Mammass, D. (2019). Multimodal Images Classification using Dense SURF, Spectral Information and Support Vector Machine. Procedia Computer Science, 148, 107–115. https://doi.org/10.1016/j.procs.2019.01.014
Battineni, G., Chintalapudi, N., & Amenta, F. (2019). Machine learning in medicine: Performance calculation of dementia prediction by support vector machines (SVM). Informatics in Medicine Unlocked, 16(May), 100200. https://doi.org/10.1016/j.imu.2019.100200
Ekong, U., Lam, H. K., Xiao, B., Ouyang, G., Liu, H., Chan, K. Y., & Ling, S. H. (2016). Classification of epilepsy seizure phase using interval type-2 fuzzy support vector machines. Neurocomputing, 199, 66–76. https://doi.org/10.1016/j.neucom.2016.03.033
Haryati, A. E., Surono, S., & Suparman, S. (2021). Implementation of Minkowski-Chebyshev Distance in Fuzzy Subtractive Clustering. EKSAKTA: Journal of Sciences and Data Analysis, 2(2), 1–7. https://doi.org/10.20885/EKSAKTA.vol2.iss1.art
Inoue, T., & Abe, S. (2001). Fuzzy support vector machines for pattern classification. Proceedings of the International Joint Conference on Neural Networks. https://doi.org/10.1109/ijcnn.2001.939575
J.ROSS, T. (2010). Fuzzy Logic With Engineering Application.
Jiang, X., Yi, Z., & Lv, J. C. (2006). Fuzzy SVM with a new fuzzy membership function. Neural Computing and Applications, 15(3–4), 268–276. https://doi.org/10.1007/s00521-006-0028-z
Ladwani, V. M. (2018). Support vector machines and applications. Computer Vision: Concepts, Methodologies, Tools, and Applications, 1381–1390. https://doi.org/10.4018/978-1-5225-5204-8.ch057
Lin, C. F., & Wang, S. De. (2002). Fuzzy support vector machines. IEEE Transactions on Neural Networks, 13(2), 464–471. https://doi.org/10.1109/72.991432
Liu, J. (2020). Fuzzy support vector machine for imbalanced data with borderline noise. Fuzzy Sets and Systems, 1, 1–10. https://doi.org/10.1016/j.fss.2020.07.018
Liu, W., Ci, L. L., & Liu, L. P. (2020). A new method of fuzzy support vector machine algorithm for intrusion detection. Applied Sciences (Switzerland), 10(3). https://doi.org/10.3390/app10031065
Lu, Y. L., Li, L., Zhou, M. M., & Tian, G. L. (2009). A new fuzzy support vector machine based on mixed kernel function. Proceedings of the 2009 International Conference on Machine Learning and Cybernetics, 1(July), 526–531. https://doi.org/10.1109/ICMLC.2009.5212552
Manochandar, S., & Punniyamoorthy, M. (2018). Scaling feature selection method for enhancing the classification performance of Support Vector Machines in text mining. Computers and Industrial Engineering, 124(July), 139–156. https://doi.org/10.1016/j.cie.2018.07.008
Mohammadi, M., & Sarmad, M. (2019). Robustified distance based fuzzy membership function for support vector machine classification. Iranian Journal of Fuzzy Systems, 16(6), 191–204. https://doi.org/10.22111/ijfs.2019.5028
Ningrum, H. C. S. (2018). Perbandingan Metode Support Vector Machine (SVM) Linear, Radial Basis Function (RBF), dan Polinomial Kernel dalam Klasifikasi Bidang Studi Lanjut Pilihan Alumni UII. Tugas Akhir Statistika Universitas Islam Indonesia, 1–90.
Richhariya, B., & Tanveer, M. (2018). A robust fuzzy least squares twin support vector machine for class imbalance learning. Applied Soft Computing Journal, 71, 418–432. https://doi.org/10.1016/j.asoc.2018.07.003
Surono, S., Haryati, A. E., & Eliyanto, J. (2021). An Optimization of Several Distance Function on Fuzzy Subtractive Clustering (Antonio J. Talloon-Ballestores (ed.)). IOS Press.
Surono, S., Nursofiyani, T., & Haryati, A. E. (2021). Optimization of Fuzzy Support Vector Machine (FSVM) Performance by Distance-Based Similarity Measure Classification. HighTech and Innovation Journal, 2(4), 285–292. https://doi.org/10.28991/hij-2021-02-04-02
Vapnik, V. (1995). The Nature of Statistical Learning. https://ci.nii.ac.jp/naid/10020951890
Viloria, A., Herazo-Beltran, Y., Cabrera, D., & Pineda, O. B. (2020). Diabetes Diagnostic Prediction Using Vector Support Machines. Procedia Computer Science, 170, 376–381. https://doi.org/10.1016/j.procs.2020.03.065
Wu, Q. (2011). Fuzzy robust ν-support vector machine with penalizing hybrid noises on symmetric triangular fuzzy number space. Expert Systems with Applications, 38(1), 39–46. https://doi.org/10.1016/j.eswa.2010.06.003
Xiaokang, D., Lei, Y., Jianping, Y., & Zhaozhong, Z. (2016a). Optimization and analysis on fuzzy SVM for object classification. Open Cybernetics and Systemics Journal, 10(6), 155–162. https://doi.org/10.2174/1874110X01610010155
Xiaokang, D., Lei, Y., Jianping, Y., & Zhaozhong, Z. (2016b). Optimization and analysis on Fuzzy SVM for targets classification in forest. Open Cybernetics and Systemics Journal, 10(6), 155–162. https://doi.org/10.2174/1874110X01610010155
DOI: https://doi.org/10.31764/jtam.v6i2.6912
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Wiwi Widia Sukeiti, Sugiyarto Surono
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: